ANONYMOUS COMMUNICATION

CMSC 414 APR 42019

WHAT IS ANONYMITY?

WHAT IS ANONYMITY?

WHAT IS ANONYMITY?

WHAT IS ANONYMITY?

WHAT IS ANONYMITY?

potential senders

WHAT IS ANONYMITY?

potential senders
potential receivers

WHAT IS ANONYMITY?

potential senders

potential receivers

SENDER-ANONYMITY:

An attacker overhearing communication cannot determine the true sender from a larger set of potential senders.
(The attacker might learn the receiver)

WHAT IS ANONYMITY?

potential senders

potential receivers

SENDER-ANONYMITY:

An attacker overhearing communication cannot determine the true sender from a larger set of potential senders.
(The attacker might learn the receiver)

WHAT IS ANONYMTTY?

potential senders

potential receivers

Who sent/received this?

SENDER-ANONYMITY:

An attacker overhearing communication cannot determine the true sender from a larger set of potential senders.
(The attacker might learn the receiver)

RECEIVER-ANONYMITY:
An attacker overhearing communication cannot determine the true receiver from a larger set of potential receivers.
(The attacker might learn the sender)

WHAT IS ANONYMTTY?

potential senders

potential receivers

Who sent/received this?

SENDER-ANONYMITY:

An attacker overhearing communication cannot determine the true sender from a larger set of potential senders.
(The attacker might learn the receiver)

RECEIVER-ANONYMITY:
An attacker overhearing communication cannot determine the true receiver from a larger set of potential receivers.
(The attacker might learn the sender)

WHAT IS ANONYMTTY?

potential senders

SENDER-ANONYMITY:

An attacker overhearing communication cannot determine the true sender from a larger set of potential senders.
(The attacker might learn the receiver)

An attacker overhearing communication cannot determine the true receiver from a larger set of potential receivers.
(The attacker might learn the sender)

Number stations: Spies use small FM transmitters to broadcast encoded messages; the set of potential receivers is everyone within broadcast range

WHAT IS ANONYMITY?

potential senders

SENDER-ANONYMITY:

An attacker overhearing communication cannot determine the true sender from a larger set of potential senders.
(The attacker might learn the receiver)

An attacker overhearing communication
cannot determine the true receiver from a larger set of potential receivers.
(The attacker might learn the sender)

SENDER-RECEIVER-ANONYMITY:

An attacker overhearing communication cannot determine the communicating pair from a larger set of potential pairs.
(The attacker might learn the sender or the receiver, but not both)

QUANTIFYING ANONYMTY

potential senders

potential receivers

ANONYMITY SET:

To quantify "how anonymous" a system / protocol is, we think of how large the anonymity set is: the set of other potential users / computers that could have performed the action

Intuition:

The more other people it might have been, the less likely they can pin it to any individual user

Example:
In a densely populated area, the anonymity set of a number station can be tens of millions

ANONYMITY IS NOT PRIVACY (NOT EXACTLY)

Both of these are fungible terms, but generally speaking...

```
PRIVACY:
Maintaining confidentiality about an entity's
personally-identifying information (PII)
```


ANONYMITY:

Maintaining confidentiality about with
whom (or whether) an entity communicates

The connection is complicated:
With whom you communicate is a form of PII

Sharing PII can de-anonymize your communication

This lecture: we will focus on anonymous communication

THE DINING CRYPTOGRAPHER'S PROBLEM

Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$

THE DINNG CRYPTOGRAPHER'S PROBLEM

Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$

PROBLEM:

One person has a message m to send (let's say it's a bit)
Can this person reveal that bit without revealing their identity?

THE DINNG CRYPTOGRAPHER'S PROBLEM

PROTOCOL

Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$

PROBLEM:

One person has a message m to send (let's say it's a bit)
Can this person reveal that bit without revealing their identity?

THE DINING CRYPTOGRAPHER'S PROBLEM

PROTOCOL

Each pair props up a menu
Private communication channel

Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$

PROBLEM:

One person has a message m to send (let's say it's a bit)
Can this person reveal that bit without revealing their identity?

THE DINING CRYPTOGRAPHER'S PROBLEM

PROTOCOL

Each pair props up a menu
Private communication channel

Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$

PROBLEM:

One person has a message m to send (let's say it's a bit)
Can this person reveal that bit without revealing their identity?

THE DINING CRYPTOGRAPHER'S PROBLEM

PROTOCOL

Each pair props up a menu
Private communication channel

Each pair flips a coin

Gets a shared random bit
Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$

PROBLEM:

One person has a message m to send (let's say it's a bit)
Can this person reveal that bit without revealing their identity?

THE DINING CRYPTOGRAPHER'S PROBLEM

PROTOCOL

Each pair props up a menu
 Private communication channel

Each pair flips a coin

Gets a shared random bit
Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$

PROBLEM:

One person has a message m to send (let's say it's a bit)
Can this person reveal that bit without revealing their identity?

THE DINNG CRYPTOGRAPHER'S PROBLEM

PROTOCOL

Each pair props up a menu
 Private communication channel

Each pair flips a coin
Gets a shared random bit
Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$

Every individual says a bit

Broadcasts:
If they have m :
$m \oplus b_{\text {left }} \oplus b_{\text {right }}$
Otherwise:
$b_{l e f t} \oplus b_{\text {right }}$

THE DINNG CRYPTOGRAPHER'S PROBLEM

PROBLEM:

One person has a message m to send (let's say it's a bit) Can this person reveal that bit without revealing their identity?

PROTOCOL

Each pair props up a menu
Private communication channel
Each pair flips a coin
Gets a shared random bit
Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$
Every individual says a bit Broadcasts:

If they have m :
$m \oplus b_{\text {left }} \oplus b_{\text {right }}$
Otherwise:
$b_{l e f t} \oplus b_{\text {right }}$

THE DINNG CRYPTOGRAPHER'S PROBLEM

PROTOCOL

Each pair props up a menu
 Private communication channel

Each pair flips a coin
Gets a shared random bit
Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$
Every individual says a bit Broadcasts:

PROBLEM:

One person has a message m to send (let's say it's a bit) Can this person reveal that bit without revealing their identity?

Otherwise:
$b_{\text {left }} \oplus b_{\text {right }}$

> If they have $m:$
> m m \oplus left $\oplus b_{\text {right }}$

THE DINNG CRYPTOGRAPHER'S PROBLEM

PROBLEM:

One person has a message m to send (let's say it's a bit) Can this person reveal that bit without revealing their identity?

PROTOCOL

Each pair props up a menu
Private communication channel
Each pair flips a coin
Gets a shared random bit
Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$
Every individual says a bit Broadcasts:

If they have m :
$m \oplus b_{\text {left }} \oplus b_{\text {right }}$
Otherwise:
$b_{l e f t} \oplus b_{\text {right }}$

THE DINNG CRYPTOGRAPHER'S PROBLEM

PROBLEM:

One person has a message m to send (let's say it's a bit) Can this person reveal that bit without revealing their identity?

PROTOCOL

Each pair props up a menu
Private communication channel
Each pair flips a coin
Gets a shared random bit
Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$
Every individual says a bit Broadcasts:

If they have m :
$m \oplus b_{\text {left }} \oplus b_{\text {right }}$
Otherwise:
$b_{l e f t} \oplus b_{\text {right }}$

THE DINING CRYPTOGRAPHER'S PROBLEM

PROBLEM:

One person has a message m to send (let's say it's a bit) Can this person reveal that bit without revealing their identity?

PROTOCOL

Each pair props up a menu
Private communication channel
Each pair flips a coin
Gets a shared random bit
Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$
Every individual says a bit Broadcasts:

If they have m :
$m \oplus b_{\text {left }} \oplus b_{\text {right }}$
Otherwise:
$b_{l e f t} \oplus b_{\text {right }}$

THE DINNG CRYPTOGRAPHER'S PROBLEM

PROBLEM:

One person has a message m to send (let's say it's a bit) Can this person reveal that bit without revealing their identity?

PROTOCOL

Each pair props up a menu
Private communication channel
Each pair flips a coin
Gets a shared random bit
Each individual knows 2 bits
$b_{\text {left }}$ and $b_{\text {right }}$
Every individual says a bit Broadcasts:

If they have m :
$m \oplus b_{\text {left }} \oplus b_{\text {right }}$
Otherwise:
$b_{\text {left }} \oplus b_{\text {right }}$

THE DINNG CRYPTOGRAPHER'S PROBLEM

THE DINING CRYPTOGRAPHER'S PROBLEM

THE DINING CRYPTOGRAPHER'S PROBLEM

THE DINNG CRYPTOGRAPHER'S PROBLEM

THE DINNG CRYPTOGRAPHER'S PROBLEM

WHO LEARNS WHAT?

AFTER THE PROTOCOL

Everyone knows

THEIR $b_{\text {left }}$ and $b_{\text {right }}$
The message m
(Whether or not they sent it)
No one learns
The remaining bit

WHO LEARNS WHAT?

AFTER THE PROTOCOL

Everyone knows

THEIR $b_{\text {left }}$ and $b_{\text {right }}$
The message m
(Whether or not they sent it)
No one learns
The remaining bit

WHO LEARNS WHAT?

AFTER THE PROTOCOL

Everyone knows

THEIR $b_{\text {left }}$ and $b_{\text {right }}$
The message m
(Whether or not they sent it)
No one learns
The remaining bit

WHO LEARNS WHAT?

AFTER THE PROTOCOL

Everyone knows
 THEIR $b_{\text {left }}$ and $b_{\text {right }}$

The message m
(Whether or not they sent it)

No one learns

The remaining bit

If $b_{A B}=0$
If A sent m, he would have sent $0 \oplus 0+1=1^{X}$
If B sent m, he would have sent $1 \oplus 0 \oplus 0=1 \checkmark$
Therefore, if $b_{A B}=0$ then B was the sender

WHO LEARNS WHAT?

WHO LEARNS WHAT?

Each of these has probability 50% (it was determined by a coin flip)

WHO LEARNS WHAT?

Each of these has probability 50% (it was determined by a coin flip)

DINNG CRYPTOGRAPHERS IN PRACTICE

INSTEAD OF SENDING BITS

Send streams of packets; flip multiple coints

HOW CAN MORE THAN ONE PERSON NEEDS TO SEND A MESSAGE?
Take turns? But what happens when two try to send at once?

DIFFICULT BUT NOT IMPOSSIBLE TO SCALE UP

In practice we use something else...

The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability

David Chaum

Centre for Mathematics and Computer Science, Kruislan 413, 1098SJ Amsterdam, The Netherlands
Abstract. Keeping confidential who sends which messages, in a world where any physical transmission can be traced to its origin, seems impossible. The solution presented here is unconditionally or cryptographically secure, depending on whether it is based on one-time-use keys or on public keys, respectively. It can be adapted to address efficiently a wide variety of practical considerations.
Key words. Untraceability, Unconditional Security, Pseudonymity

Introduction

Three cryptographers are sitting down to dinner at their favorite three-star restaurant. Their waiter informs them that arrangements have been made with the maître d'hôtel for the bill to be paid anonymously. One of the cryptographers might be paying for the dinner, or it might have been NSA (U.S. National Security Agency) The three cryptographers respect each other's right to make an anonymous payment, but they wonder if NSA is paying. They resolve their uncertainty fairly by carrying out the following protocol:
Each cryptographer flips an unbiased coin behind his menu, between him and the cryptographer on his right, so that only the two of them can see the outcome Each cryptographer then states aloud whether the two coins he can see-the one he flipped and the one his left-hand neighbor flipped-fell on the same side or on different sides. If one of the cryptographers is the payer, he states the opposite of what he sees. An odd number of differences uttered at the table indicates that a cryptographer is paying; an even number indicates that NSA is paying (assuming that the dinner was paid for only once). Yet if a cryptographer is paying, neither of the other two learns anything from the utterances about which cryptographer it is. To see why the protocol is unconditionally secure if carried out faithfully, consider the dilemma of a cryptographer who is not the payer and wishes to find out which cryptographer is. (If NSA pays, there is no anonymity problem.) There are two cases. In case (1) the two coins he sees are the same, one of the other cryptographers said "different," and the other one said "same." If the hidden outcome was the same as the two outcomes he sees, the cryptographer who said "different" is the payer; if the outcome was different, the one who said "same" is the payer. But since the hidden coin is fair, both possibilities are equally likely. In case (2) the coins he sees are

Technical Note
Programming Techniques
Untraceable Electronic Mail
Return Addresses, and
Digital Pseudonyms
David L. Chaum
University of California, Berkeley

A technique based on public key cryptography A technique based on public key cryptography who a participant communicates with as well as the content of the communication-in spite of an unsecured underlying telecommunication system. The technique does not require a universally trusted authority. One correspondent can remain anonymous to a second, while allowing the second to respond via an untraceble retur
addres
The technique can also be used to form rosters of untraceable digital pseudonyms from selected applications. Applicants retain the exclusive ability to form digital signatures corresponding to their pseudonym. Elections in which any interested party can verify that the ballots have been properiy counted are possible anonymously mailed ballots are signed with pseudonym individual to correspond with a record-keeping organization under a unique pseudonym which appears in roster of acceptable clients.

Key Words and Phrases: electronic mail, public key cryptosystems, digital signatures, traffic analysis, security, privacy

R Categories: 2.12, 3.81

Introduction

Cryptology is the science of secret communication. Cryptographic techniques have been providing secrecy Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direc
commercial advantage, the ACM copyright notice and the tite of the publication and its date appear, and notice is given that corying is by
permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
This work was partially supported by the National Science Foun dation under Grant MCS $75-23739$ and by the Air Force Office of Scientific Research under Contuact F49620-79-COI73.
Author's present address: Computer Science Division, Electrical
Enginerering and Computer Sciences Deparment, University of Cali
fornia

of message content for thousands of years [3]. Recently some new solutions to the "key distribution problem" secret key) have been suggested [2,4], under the name o public key cryptography. Another cryptographic prob lem, the traffic analysis problem" (he problem ofkeeping confidential who converses with whom, and whe they converse), will become increasingly important with the growth of electronic mail. This paper presents a
solution to the traffic analysis problem that is based on public key cryptography. Baran has solved the traffic analysis problem for networks [1], but requires each participant to trust a common authority. In contrast, systems based on the solution advanced here can be compromised only by subversion or conspiracy of all of a set of authorities. Ideally, each participant is an authority.

The following two sections introduce the notation and assumptions. Then the basic concepts are introduced authorities. The final section covers general purpose mail networks.

Notation

Someone becomes a user of a public key cryptosystem (like that of Rivest, Shamir, and Adleman [5]) by creating a pair of keys K and K^{-1} from a suitable randomly generated seed. The public key K is made known to the other users or anyone else who cares to know it; the with key K will be denoted $K(X)$, and is just the image of X under the mapping implemented by the cryptographic algorithm using key K. The increased utility of these algorithms over conventional algorithms results because the two keys are inverses of each other, in the sense that
$K^{-1}(K(X))=K\left(K^{-1}(X)\right)=X$.
A message X is sealed with a public key K so that only the holder of the private key K^{-1} can discover its content. If X is simply encrypted with K, then anyone could verify This threat can be eliminated by attaching a large string of random bits R to X before encrypting. The sealing of X with K is then denoted $K(R, X)$. A user signs some material X by prepending a large constant C (all zeros, for example) and then encrypting with its private key,
denoted $K^{-1}(C, X)=Y$. Anyone can verify that Y has been signed by the holder of K^{-1} and determine the signed matter X, by forming $K(Y)=C, X$, and checking for C.

Assumptions

The approach taken here is based on two important assumptions:

Communications	February 1981 of the ACM
Volume24 Number 2 2	

