
Program analysis for 
security



Two main classes

• Static:  
• Operates on source or binary at rest 

• Dynamic:  
• Operates at runtime 

• Also hybrids of the two



Static: Examples
• Code review 

• Grep 

• Taint analysis 

• Symbolic execution 

• Templates/specifications (metacompilation)



Dynamic: Examples

• Testing 

• Debugging 

• Log-tracing 

• Fuzzing



Static: Pros and Cons
• Analyze everything in the program 

• Not just what runs during this execution 

• Don’t need running environment (e.g. comms) 
• Can analyze incomplete programs (libraries) 

• If you have the source code 

• Everything could be a lot of stuff! 
• Scalability 
• Code that never runs in practice (or dead) 

• No side effects 

• Only find what you are looking for



Dynamic: Pros and Cons

• Concrete failure proves an issue 
• May aid fix 

• Computationally scalable 

• Coverage? 

• Resources/environment? 



Static Analysis
Some material from Dave Levin, 
Mike Hicks, Dawson Engler, Lujo 

Bauer

http://philosophyofscienceportal.blogspot.com/2013/04/van-de-graaff-generator-redux.html



From here we mostly mean automated: in a 
sense, ask a computer to do your code review



High-level idea
• Model program properties abstractly 

• Set some rules/constraints and then check them 

• Tools from program analysis: 
• Type inference 
• Theorem proving 
• etc.



• What kinds of properties are checkable this way? 

• What guarantees can we have? (FP/FN) 

• Resources/scalability?



The Halting Problem

• Can we write an analyzer that can prove, for any 
program P and inputs to it, P will terminate? 
• Doing so is called the halting problem
• Unfortunately, this is undecidable: any analyzer 

will fail to produce an answer for at least some 
programs and/or inputs

program P analyzer

Always terminates?
 register char *q; 
  char inp[MAXLINE]; 
  char cmdbuf[MAXLINE]; 
  extern ENVELOPE BlankEnvelope; 
  extern void help __P((char *)); 
  extern void settime __P((ENVELOPE *)); 
  extern bool enoughdiskspace __P((long)); 
  extern int runinchild __P((char *, ENVELOPE *)); 
. 
. 
.

Some material inspired by work of Matt Might: http://matt.might.net/articles/intro-static-analysis/



Check other properties instead?
• Perhaps security-related properties are feasible 

• E.g., that all accesses a[i] are in bounds 

• But these properties can be converted into the halting 
problem by transforming the program 
• A perfect array bounds checker could solve the halting 

problem, which is impossible! 

• Other undecidable properties (Rice’s theorem) 
• Does this string come from a tainted source? 
• Is this pointer used after its memory is freed? 
• Do any variables experience data races?



So is static analysis impossible?

• Perfect static analysis is not possible 

• Useful static analysis is perfectly possible, despite 
1. Nontermination - analyzer never terminates, or 

2. False alarms - claimed errors are not really errors, or 

3. Missed errors - no error reports ≠ error free 

• Nonterminating analyses are confusing, so tools tend 
to exhibit only false alarms and/or missed errors



Safe programs Things I say are safe

Soundness Completeness

Programs I say 
are safe Safe things

Trivially Sound: Say nothing is safe Trivially Complete: Say everything is safe

If analysis says that 
X is safe, then X is 

safe.

If X is safe, then 
analysis says X is 

safe.

Sound and Complete: 
Say exactly the set of true things

I say programs are 
safe if and only if

they are safe 



• Soundness: No error found = no error exists 
• Alarms may be false errors 

• Completeness: Any error found = real error 
• Silence does not guarantee no errors 

• Basically any useful analysis  
• is neither sound nor complete (def. not both) 
• … usually leans one way or the other



The Art of Static Analysis

• Precision: Carefully model program, minimize 
false positives/negatives 

• Scalability: Successfully analyze large programs 
• Understandability: Actionable reports



• Observation: Code style is important
• Aim to be precise for “good” programs 

• OK to forbid yucky code in the name of safety 
• Code that is more understandable to the 

analysis is more understandable to humans



Adding some depth: 
Dataflow (taint) analysis



Tainted Flow Analysis
• Cause of many attacks is trusting unvalidated input 

• Input from the user (network, file) is tainted 
• Various data is used, assuming it is untainted 

• Examples expecting untainted data 
• source string of strcpy (≤ target buffer size) 
• format string of printf (contains no format 

specifiers) 
• form field used in constructed SQL query (contains 

no SQL commands)



Recall: Format String Attack
• Adversary-controlled format string

char *name = fgets(…, network_fd);
printf(name);   // Oops



The problem, in types
• Specify our requirement as a type qualifier 

• tainted = possibly controlled by attacker 
• untainted = must not be controlled by attacker

int printf(untainted char *fmt, …);
tainted char *fgets(…);

tainted char *name = fgets(…,network_fd);
printf(name); // FAIL: untainted <- tainted



Analyzing taint flows
• Goal: For all possible inputs, prove tainted data will never be 

used where untainted data is expected 
• untainted annotation: indicates a trusted sink
• tainted annotation: an untrusted source
• no annotation means: not specified (analysis must figure it out) 

• Solution requires inferring flows in the program 
• What sources can reach what sinks 
• If any flows are illegal, i.e., whether a tainted source may 

flow to an untainted sink 

• We will aim to develop a (mostly) sound analysis 



Legal Flow
void f(tainted int);
untainted int a = …;
f(a);

f accepts tainted or untainted data g accepts only untainted data

void g(untainted int);
tainted int b = …;
g(b);

Define allowed flow as a 
constraint: tainteduntainted <

Illegal Flow

At each program step, test whether inputs ≤ policy 
(Read as: input less tainted (or equal) than policy



Analysis Approach
• If no qualifier is present, we must infer it 

• Steps: 
• Create a name for each missing qualifier (e.g., α, β) 
• For each program statement, generate constraints

• Statement x = y generates constraint qy ≤ qx  
• Solve the constraints to produce solutions for α, β, etc. 

• A solution is a substitution of qualifiers (like tainted or 
untainted) for names (like α and β) such that all of the 
constraints are legal flows 

• If there is no solution, we (may) have an illegal flow



printf(x);

int printf(untainted char *fmt, …);
tainted char *fgets(…);

tainted ≤ α

α ≤ β

β ≤ untainted

α
β
char *name = fgets(…, network_fd);
char *x = name;

Illegal flow!
No possible solution for 

α and β

Example Analysis

First constraint requires α =  tainted 
To satisfy the second constraint implies β =  tainted 
But then the third constraint is illegal: tainted ≤ untainted

1

1

2

2

3

3



Taint Analysis: 
Adding  

Sensitivity



But what about?
int printf(untainted char *fmt, …);
tainted char *fgets(…);

  char *name = fgets(…, network_fd);
  char *x;
x = name;
x = “hello!”;
printf(x);

α
β

tainted ≤ α
α ≤ β

β ≤ untainted
untainted ≤ β

→

False Alarm!
No constraint solution. Bug?



Flow Sensitivity
• Our analysis is flow insensitive 

• Each variable has one qualifier  
• Conflates the taintedness of all values it ever contains 

• Flow-sensitive analysis accounts for variables whose contents change 
• Allow each assigned use of a variable to have a different qualifier 

• E.g., α1 is x’s qualifier at line 1, but α2 is the qualifier at line 2, 
where α1 and α2 can differ 

• Could implement this by transforming the program to assign to a 
variable at most once



Reworked Example
int printf(untainted char *fmt, …);
tainted char *fgets(…);

  char *name = fgets(…, network_fd);
char   *x1,  *x2;
x1 = name;
x2 = “%s”;
printf(x2);

α

tainted ≤ α
α ≤ β

γ ≤ untainted
untainted ≤ γ

→

No Alarm
Good solution exists: 

γ = untainted

α = β = tainted

γβ



Handling conditionals
int printf(untainted char *fmt, …);
tainted char *fgets(…);

  char *name = fgets(…, network_fd);
  char *x;
if (…)  x = name;
else    x = “hello!”;
printf(x);

α
β

tainted ≤ α
α ≤ β

β ≤ untainted
untainted ≤ β

→

Constraints still unsolvable 
Illegal flow



Multiple Conditionals
int printf(untainted char *fmt, …);
tainted char *fgets(…);

void f(int x) {
    char *y;
  if (x) y = “hello!”;
  else   y = fgets(…, network_fd);
  if (x) printf(y);
}

α

tainted ≤ α
α ≤ untainted

untainted ≤ α

→

No solution for α. Bug?
False Alarm!

(and flow sensitivity won’t help)



Path Sensitivity
• Consider path feasibility. E.g., f(x) can execute path 

• 1-2-4-5-6 when x ≠ 0, or  
• 1-3-4-6 when x == 0. But, 
• path 1-3-4-5-6 infeasible 

• A path sensitive analysis checks feasibility, e.g., by 
qualifying each constraint with a path condition

void f(int x) {
  char *y;
  1if (x) 2y = “hello!”;
   else   3y = fgets(…);
  4if (x) 5printf(y);
6}

• x ≠ 0 ⟹ untainted ≤ α     (segment 1-2) 

• x = 0 ⟹ tainted ≤ α         (segment 1-3) 

• x ≠ 0 ⟹ α ≤ untainted     (segment 4-5)



Why not use flow/path sensitivity?
• Flow sensitivity adds precision, path sensitivity adds more 

• Reduce false positives: less developer effort! 

• But both of these make solving more difficult
• Flow sensitivity increases the number of nodes in the 

constraint graph 
• Path sensitivity requires more general solving 

procedures to handle path conditions 

• In short: precision (often) trades off scalability
• Ultimately, limits the size of programs we can analyze



Implicit flows
void copy(tainted char *src, 
          untainted char *dst, 
          int len) {
  untainted int i;
  for (i = 0; i<len; i++) {
    dst[i] = src[i]; //illegal
  }
}

tainted ≤ untainted
Illegal flow :



void copy(tainted char *src, 
          untainted char *dst, 
          int len) {
  untainted int i, j;
  for (i = 0; i<len; i++) {
    for (j = 0; j<sizeof(char)*256; j++) {
      if (src[i] == (char)j)
        dst[i] = (char)j;
    }
  }
}

Implicit flows

Missed flow !

//legal?

untainted char untainted char



Implicit flow analysis
• Implicit flow: one value implicitly influences another 

• One way to find these: maintain a scoped program 
counter (pc) label
• Represents the maximum taint affecting the current pc 

• Assignments generate constraints involving the pc 
• x = y produces two constraints: 

label (y) ≤ label (x)   (as usual) 
pc ≤ label (x)



pc1 = untainted
pc2 = tainted

pc3 = tainted

pc4 = untainted

Implicit flow example
tainted int src; 
α int dst;
if (src == 0)
 dst = 0;
else 
 dst = 1;

dst += 0; untainted ≤ α

pc1 = untainted
pc2 = tainted

pc3 = tainted

pc4 = untainted

untainted ≤ α

untainted ≤ α
pc2  ≤ α

pc3  ≤ α

pc4  ≤ α

Taint on α is identified. 
Discovers implicit flow!

: tainted ≤ α



Why not implicit flow?
• Tracking implicit flows can lead to false alarms 

• E.g., ignores values 

• Extra constraints hurt performance

• The evil copying example is pathological 
• We typically don’t write programs like this* 
• Implicit flows will have little overall influence 

• So: taint analyses tend to ignore implicit flows

tainted int src; 
α int dst;
if (src > 0) dst = 0;
else         dst = 0;

* Exception coming in two slides



Other challenges
• Taint through operations 

• tainted a; untainted b; c=a+b — is c tainted? (yes, probably)  

• Function calls and context sensitivity 
• Function pointers: Flow analysis to compute possible targets 

• Struct fields 
• Track taint for the whole struct, or each field? 
• Taint per instance, or shared among all of them (or something in 

between)?  
• Note: objects ≈ structs + function pointers 

• Arrays: Track taint per element or across whole array?
No single correct answer! 

(Tradeoffs: Soundness, completeness, performance)



Other refinements
• Label additional sources and sinks 

• e.g., Array accesses must have untainted index 

• Handle sanitizer functions
• Convert tainted data to untainted 

• Complementary goal: Leaking confidential data 
• Don’t want secret sources to go to public sinks

• Implicit flows more relevant (malicious code)
• Dual of tainting



Static analysis in practice
• Thoroughly check limited but useful properties

• Eliminate some categories of errors 
• Developers can concentrate on deeper reasoning

• Encourage better development practices
• Programming models that avoid mistakes 
• Teach programmers to manifest their assumptions 

• Using annotations that improve tool precision

• Seeing increased commercial adoption



Fuzzing
Some material from Tal Garfinkel, Dmitry Vyukov

https://reviewsfromtheabyss.files.wordpress.com/2012/07/2007_hot_fuzz_002.jpg



Testing vs. Fuzzing

• Testing: Test many (mostly) normal inputs 
• Goal: Keep user from encountering bugs 

• Fuzzing: Test abnormal inputs 
• Goal: Look for exploitable weakness



High-level idea

• Generate many weird inputs 
• Files (.pdf, .wav, .html, etc) 
• Network packets 
• Other? 

• Monitor application for errors 
• Crashes       vulnerabilities??=



How to generate inputs?

• Random/brute force (hmm….) 

• Mutation: Tweak valid inputs 

• Grammar-based 

• Using symbolic execution / static analysis (whitebox) 

• Coverage-guided (greybox)



Coverage-guided fuzzing

• While (true): 
• Select input from corpus 
• Mutate input 
• Run target program, collect code coverage 
• If got new coverage, add input back to corpus



Types of mutations
• Add/remove/swap bytes from one input 

• Splice two inputs 

• Insert token from dictionary or magic number 

• Change semantic token (“123”-> “456”, “cat”-> “dog”) 

• etc.



Detecting a “problem”

• Did it crash? 

• Did it freeze?  

• Did it give the correct output? 
• Round trip: encode/decode, etc. 
• Compare to reference implementation



How much fuzz is enough?

• Random mutations can take a while to hit 

• Even w/ coverage metrics! 
• Can cover it without hitting the bug 
• Lots of code you never reach


