
Program analysis for
security

Two main classes

• Static:
• Operates on source or binary at rest

• Dynamic:
• Operates at runtime

• Also hybrids of the two

Static: Examples
• Code review

• Grep

• Taint analysis

• Symbolic execution

• Templates/specifications (metacompilation)

Dynamic: Examples

• Testing

• Debugging

• Log-tracing

• Fuzzing

Static: Pros and Cons
• Analyze everything in the program

• Not just what runs during this execution

• Don’t need running environment (e.g. comms)
• Can analyze incomplete programs (libraries)

• If you have the source code

• Everything could be a lot of stuff!
• Scalability
• Code that never runs in practice (or dead)

• No side effects

• Only find what you are looking for

Dynamic: Pros and Cons

• Concrete failure proves an issue
• May aid fix

• Computationally scalable

• Coverage?

• Resources/environment?

Static Analysis
Some material from Dave Levin,
Mike Hicks, Dawson Engler, Lujo

Bauer

http://philosophyofscienceportal.blogspot.com/2013/04/van-de-graaff-generator-redux.html

From here we mostly mean automated: in a
sense, ask a computer to do your code review

High-level idea
• Model program properties abstractly

• Set some rules/constraints and then check them

• Tools from program analysis:
• Type inference
• Theorem proving
• etc.

• What kinds of properties are checkable this way?

• What guarantees can we have? (FP/FN)

• Resources/scalability?

The Halting Problem

• Can we write an analyzer that can prove, for any
program P and inputs to it, P will terminate?
• Doing so is called the halting problem
• Unfortunately, this is undecidable: any analyzer

will fail to produce an answer for at least some
programs and/or inputs

program P analyzer

Always terminates?
 register char *q;
 char inp[MAXLINE];
 char cmdbuf[MAXLINE];
 extern ENVELOPE BlankEnvelope;
 extern void help __P((char *));
 extern void settime __P((ENVELOPE *));
 extern bool enoughdiskspace __P((long));
 extern int runinchild __P((char *, ENVELOPE *));
.
.
.

Some material inspired by work of Matt Might: http://matt.might.net/articles/intro-static-analysis/

Check other properties instead?
• Perhaps security-related properties are feasible

• E.g., that all accesses a[i] are in bounds

• But these properties can be converted into the halting
problem by transforming the program
• A perfect array bounds checker could solve the halting

problem, which is impossible!

• Other undecidable properties (Rice’s theorem)
• Does this string come from a tainted source?
• Is this pointer used after its memory is freed?
• Do any variables experience data races?

So is static analysis impossible?

• Perfect static analysis is not possible

• Useful static analysis is perfectly possible, despite
1. Nontermination - analyzer never terminates, or

2. False alarms - claimed errors are not really errors, or

3. Missed errors - no error reports ≠ error free

• Nonterminating analyses are confusing, so tools tend
to exhibit only false alarms and/or missed errors

Safe programs Things I say are safe

Soundness Completeness

Programs I say
are safe Safe things

Trivially Sound: Say nothing is safe Trivially Complete: Say everything is safe

If analysis says that
X is safe, then X is

safe.

If X is safe, then
analysis says X is

safe.

Sound and Complete:
Say exactly the set of true things

I say programs are
safe if and only if

they are safe

• Soundness: No error found = no error exists
• Alarms may be false errors

• Completeness: Any error found = real error
• Silence does not guarantee no errors

• Basically any useful analysis
• is neither sound nor complete (def. not both)
• … usually leans one way or the other

The Art of Static Analysis

• Precision: Carefully model program, minimize
false positives/negatives

• Scalability: Successfully analyze large programs
• Understandability: Actionable reports

• Observation: Code style is important
• Aim to be precise for “good” programs

• OK to forbid yucky code in the name of safety
• Code that is more understandable to the

analysis is more understandable to humans

Adding some depth:
Dataflow (taint) analysis

Tainted Flow Analysis
• Cause of many attacks is trusting unvalidated input

• Input from the user (network, file) is tainted
• Various data is used, assuming it is untainted

• Examples expecting untainted data
• source string of strcpy (≤ target buffer size)
• format string of printf (contains no format

specifiers)
• form field used in constructed SQL query (contains

no SQL commands)

Recall: Format String Attack
• Adversary-controlled format string

char *name = fgets(…, network_fd);
printf(name); // Oops

The problem, in types
• Specify our requirement as a type qualifier

• tainted = possibly controlled by attacker
• untainted = must not be controlled by attacker

int printf(untainted char *fmt, …);
tainted char *fgets(…);

tainted char *name = fgets(…,network_fd);
printf(name); // FAIL: untainted <- tainted

Analyzing taint flows
• Goal: For all possible inputs, prove tainted data will never be

used where untainted data is expected
• untainted annotation: indicates a trusted sink
• tainted annotation: an untrusted source
• no annotation means: not specified (analysis must figure it out)

• Solution requires inferring flows in the program
• What sources can reach what sinks
• If any flows are illegal, i.e., whether a tainted source may

flow to an untainted sink

• We will aim to develop a (mostly) sound analysis

Legal Flow
void f(tainted int);
untainted int a = …;
f(a);

f accepts tainted or untainted data g accepts only untainted data

void g(untainted int);
tainted int b = …;
g(b);

Define allowed flow as a
constraint: tainteduntainted <

Illegal Flow

At each program step, test whether inputs ≤ policy
(Read as: input less tainted (or equal) than policy

Analysis Approach
• If no qualifier is present, we must infer it

• Steps:
• Create a name for each missing qualifier (e.g., α, β)
• For each program statement, generate constraints

• Statement x = y generates constraint qy ≤ qx
• Solve the constraints to produce solutions for α, β, etc.

• A solution is a substitution of qualifiers (like tainted or
untainted) for names (like α and β) such that all of the
constraints are legal flows

• If there is no solution, we (may) have an illegal flow

printf(x);

int printf(untainted char *fmt, …);
tainted char *fgets(…);

tainted ≤ α

α ≤ β

β ≤ untainted

α
β
char *name = fgets(…, network_fd);
char *x = name;

Illegal flow!
No possible solution for

α and β

Example Analysis

First constraint requires α = tainted
To satisfy the second constraint implies β = tainted
But then the third constraint is illegal: tainted ≤ untainted

1

1

2

2

3

3

Taint Analysis:
Adding

Sensitivity

But what about?
int printf(untainted char *fmt, …);
tainted char *fgets(…);

 char *name = fgets(…, network_fd);
 char *x;
x = name;
x = “hello!”;
printf(x);

α
β

tainted ≤ α
α ≤ β

β ≤ untainted
untainted ≤ β

→

False Alarm!
No constraint solution. Bug?

Flow Sensitivity
• Our analysis is flow insensitive

• Each variable has one qualifier
• Conflates the taintedness of all values it ever contains

• Flow-sensitive analysis accounts for variables whose contents change
• Allow each assigned use of a variable to have a different qualifier

• E.g., α1 is x’s qualifier at line 1, but α2 is the qualifier at line 2,
where α1 and α2 can differ

• Could implement this by transforming the program to assign to a
variable at most once

Reworked Example
int printf(untainted char *fmt, …);
tainted char *fgets(…);

 char *name = fgets(…, network_fd);
char *x1, *x2;
x1 = name;
x2 = “%s”;
printf(x2);

α

tainted ≤ α
α ≤ β

γ ≤ untainted
untainted ≤ γ

→

No Alarm
Good solution exists:

γ = untainted

α = β = tainted

γβ

Handling conditionals
int printf(untainted char *fmt, …);
tainted char *fgets(…);

 char *name = fgets(…, network_fd);
 char *x;
if (…) x = name;
else x = “hello!”;
printf(x);

α
β

tainted ≤ α
α ≤ β

β ≤ untainted
untainted ≤ β

→

Constraints still unsolvable
Illegal flow

Multiple Conditionals
int printf(untainted char *fmt, …);
tainted char *fgets(…);

void f(int x) {
 char *y;
 if (x) y = “hello!”;
 else y = fgets(…, network_fd);
 if (x) printf(y);
}

α

tainted ≤ α
α ≤ untainted

untainted ≤ α

→

No solution for α. Bug?
False Alarm!

(and flow sensitivity won’t help)

Path Sensitivity
• Consider path feasibility. E.g., f(x) can execute path

• 1-2-4-5-6 when x ≠ 0, or
• 1-3-4-6 when x == 0. But,
• path 1-3-4-5-6 infeasible

• A path sensitive analysis checks feasibility, e.g., by
qualifying each constraint with a path condition

void f(int x) {
 char *y;
 1if (x) 2y = “hello!”;
 else 3y = fgets(…);
 4if (x) 5printf(y);
6}

• x ≠ 0 ⟹ untainted ≤ α (segment 1-2)

• x = 0 ⟹ tainted ≤ α (segment 1-3)

• x ≠ 0 ⟹ α ≤ untainted (segment 4-5)

Why not use flow/path sensitivity?
• Flow sensitivity adds precision, path sensitivity adds more

• Reduce false positives: less developer effort!

• But both of these make solving more difficult
• Flow sensitivity increases the number of nodes in the

constraint graph
• Path sensitivity requires more general solving

procedures to handle path conditions

• In short: precision (often) trades off scalability
• Ultimately, limits the size of programs we can analyze

Implicit flows
void copy(tainted char *src,
 untainted char *dst,
 int len) {
 untainted int i;
 for (i = 0; i<len; i++) {
 dst[i] = src[i]; //illegal
 }
}

tainted ≤ untainted
Illegal flow :

void copy(tainted char *src,
 untainted char *dst,
 int len) {
 untainted int i, j;
 for (i = 0; i<len; i++) {
 for (j = 0; j<sizeof(char)*256; j++) {
 if (src[i] == (char)j)
 dst[i] = (char)j;
 }
 }
}

Implicit flows

Missed flow !

//legal?

untainted char untainted char

Implicit flow analysis
• Implicit flow: one value implicitly influences another

• One way to find these: maintain a scoped program
counter (pc) label
• Represents the maximum taint affecting the current pc

• Assignments generate constraints involving the pc
• x = y produces two constraints:

label (y) ≤ label (x) (as usual)
pc ≤ label (x)

pc1 = untainted
pc2 = tainted

pc3 = tainted

pc4 = untainted

Implicit flow example
tainted int src;
α int dst;
if (src == 0)
 dst = 0;
else
 dst = 1;

dst += 0; untainted ≤ α

pc1 = untainted
pc2 = tainted

pc3 = tainted

pc4 = untainted

untainted ≤ α

untainted ≤ α
pc2 ≤ α

pc3 ≤ α

pc4 ≤ α

Taint on α is identified.
Discovers implicit flow!

: tainted ≤ α

Why not implicit flow?
• Tracking implicit flows can lead to false alarms

• E.g., ignores values

• Extra constraints hurt performance

• The evil copying example is pathological
• We typically don’t write programs like this*
• Implicit flows will have little overall influence

• So: taint analyses tend to ignore implicit flows

tainted int src;
α int dst;
if (src > 0) dst = 0;
else dst = 0;

* Exception coming in two slides

Other challenges
• Taint through operations

• tainted a; untainted b; c=a+b — is c tainted? (yes, probably)

• Function calls and context sensitivity
• Function pointers: Flow analysis to compute possible targets

• Struct fields
• Track taint for the whole struct, or each field?
• Taint per instance, or shared among all of them (or something in

between)?
• Note: objects ≈ structs + function pointers

• Arrays: Track taint per element or across whole array?
No single correct answer!

(Tradeoffs: Soundness, completeness, performance)

Other refinements
• Label additional sources and sinks

• e.g., Array accesses must have untainted index

• Handle sanitizer functions
• Convert tainted data to untainted

• Complementary goal: Leaking confidential data
• Don’t want secret sources to go to public sinks

• Implicit flows more relevant (malicious code)
• Dual of tainting

Static analysis in practice
• Thoroughly check limited but useful properties

• Eliminate some categories of errors
• Developers can concentrate on deeper reasoning

• Encourage better development practices
• Programming models that avoid mistakes
• Teach programmers to manifest their assumptions

• Using annotations that improve tool precision

• Seeing increased commercial adoption

Fuzzing
Some material from Tal Garfinkel, Dmitry Vyukov

https://reviewsfromtheabyss.files.wordpress.com/2012/07/2007_hot_fuzz_002.jpg

Testing vs. Fuzzing

• Testing: Test many (mostly) normal inputs
• Goal: Keep user from encountering bugs

• Fuzzing: Test abnormal inputs
• Goal: Look for exploitable weakness

High-level idea

• Generate many weird inputs
• Files (.pdf, .wav, .html, etc)
• Network packets
• Other?

• Monitor application for errors
• Crashes vulnerabilities??=

How to generate inputs?

• Random/brute force (hmm….)

• Mutation: Tweak valid inputs

• Grammar-based

• Using symbolic execution / static analysis (whitebox)

• Coverage-guided (greybox)

Coverage-guided fuzzing

• While (true):
• Select input from corpus
• Mutate input
• Run target program, collect code coverage
• If got new coverage, add input back to corpus

Types of mutations
• Add/remove/swap bytes from one input

• Splice two inputs

• Insert token from dictionary or magic number

• Change semantic token (“123”-> “456”, “cat”-> “dog”)

• etc.

Detecting a “problem”

• Did it crash?

• Did it freeze?

• Did it give the correct output?
• Round trip: encode/decode, etc.
• Compare to reference implementation

How much fuzz is enough?

• Random mutations can take a while to hit

• Even w/ coverage metrics!
• Can cover it without hitting the bug
• Lots of code you never reach

