

Secure computation

With material from Matthew Green, Elaine Shi, CS Unplugged, others

- Secure computation
- Zero-knowledge proofs
- Commitment schemes
- Multiparty computation

- Goal: P proves to V that some statement is true - Without conveying additional information
- In general, probabilistic
- Repeat a bunch of times as proof

Example 1: Hallway password

- Does Peggy have the key?
- Both stand in the entrance.
- When Victor isn't looking, Peggy picks one hall
- Victor then yells "GREEN" or "ORANGE"
- Peggy must come back via the chosen color
- Repeating many times "proves" Peggy has password
- With high probability

Example 2: Two baseballs

- Peggy has two baseballs: One red, one green
- Otherwise identical
- Victor is color-blind, thinks they are the same
- Peggy's goal: To prove she can distinguish
- Peggy places them in Victor's hands
- Victor puts them behind his back, may switch
- Peggy tells whether he switched
- As before, repeat many times

Security properties

- Complete: Honest V will be convinced by honest P
- Sound: Honest V can't* be convinced by cheating P
- Proves nothing to outside observers either way
- Peggy and Victor can collude by precomputing
- Peggy could cheat with a time machine
- Victor gets the same info either way
- Implies that real protocol does not leak

Burning questions

- Why is this crypto?
- Does everyone have to be in the same place?
-Why do we care in real life?

The chicken is involved. The pig is committed.

Commitment schemes

Commitment schemes

- Commit to a value but do not show it
- Open it later and prove it hasn't changed
- Analogy:
- I pick a number between 1 and 100
- Write it down and seal it in an envelope
- You pick odd or even
- If you're right, I pay you; else you pay me
- Why did I have to write it down?

Required properties

- Hiding: Commitment reveals nothing about value
- Binding: Can't open to a different value

Remote coin-flip

- Goal: Flip coin over the telephone
- Alice flips, Bob chooses heads or tails
- Requires Alice to commit her output
- In essence, need a one-way function
- Example/activity: Using and/or circuits

Try it! (Small groups)

- "Bob" draws a circuit
- "Alice" commits to an outcome
- "Bob" chooses odd or even parity
- Declare a winner
- Can either of you cheat? How?

Cheating

- Alice can cheat IFF she has two opposite-parity inputs that produce the same output
- Bob can cheat IFF he can predict the input from the output

Commitment via hash

- Alice, Bob pick a random numbers X, Y
- Alice publishes $\mathrm{H}(\mathrm{X})$; Bob publishes $\mathrm{H}(\mathrm{Y})$
- Bob chooses odd or even
- Reveal X, Y and add them; check sum parity
- Collision resistance: Can't fake X or Y
- Pre-image resistance: Can’t calculate X or Y

Multiparty computation

- Everyone has a private input
- Together, we compute some related result
- No one's private input is given away

Example 1: How old are we?

- Goal: Find our average age
- Without anyone giving away their own age
- Activity: Need five volunteers
- And five sheets of paper

Setup

- Alice, Bob are honest but curious
- Don't lie, follow protocol correctly
- But try to learn from available info
- Security equivalent to fully trusted third party

Defining leakage

- Learning $f(a, b)$ gives some information
- What if $f(a, b)=(a+b)$?
- Final security property:
- Alice learns only info computable from f(a,b), a
- Bob learns only info computable from f(a,b), b

Example 2: Truth in dating

- After meeting and chatting, Alice and Bonnie want to find out whether they want to date each other
- If Bonnie says no, Alice doesn't reveal her answer
- And vice versa
- Essentially secure AND

Alice	Bonnie	Result
NO DATE	NO DATE	NO DATE
NO DATE	DATE	NO DATE
DATE	NO DATE	NO DATE
DATE	DATE	DATE

Solution using 5 cards

- Alice and Bob each get two emoji cards: \odot,
- Plus one public
- Place cards face down on table as follows:

- Using this chart:

Solution, ctd.

- Each gets to privately cyclic-shift the cards X times
- Final results: 3 hearts in a row = match

Other sample problems

- Two reporters compare confidential sources
- To see if they are the same person
- Check for secret society password
- Find out who bid more without revealing your bid
- etc.

Desired properties

- Resolution: Find out desired outcome
- Privacy:
- No involved party learns anything else
- No third party learns anything
- Security: No one profits by cheating
- Can't know outcome unless other party does
- Simplicity: Easy to implement, understand
- Remoteness: Don't need to be co-located

Example: Who is richer? Yao's millionaire's problem (1982)

- Alice (i) and Bob (j) have $\$ 1<=\mathrm{i}, \mathrm{j}<=\$ 6$
- Assumption for simplicity
- Generalizable to more people, more numbers
- Later improvements in efficiency
- Also has security limitations
- For conceptual purposes only

1. Bob's turn

- Bob chooses a large random number x
- Bob computes $m=E\left(P K_{A}, x\right)$
- Bob sends to Alice: $B=m-j+1$
- Example: $j=5, B=m-4$

2. Alice's turn

- Alice generates $y_{u}=D\left(S_{A}, B+u-1\right)$ for $u=1: 6$
- $y_{u}=D\left(S K_{A}, m-j+u\right)$
- Alice picks a prime p and generates $z_{u}=y_{u} \bmod p$
- Ensure all z's at least 2 apart or try again
- Example:
- $z_{3}=D\left(S K_{A}, m-2\right) \bmod p$
- $z_{5}=D\left(S K_{A}, m\right) \bmod p=x \bmod p$

2.5 Still Alice’s turn

- Alice sends p to Bob
- Alice sends 6 numbers to Bob as follows:
- Z_{1}.. Zi_{i}
- $Z_{i+1}+1 . . Z_{6}+1$
- Example: $i=2$
- $z_{1}, z_{2}, z_{3}+1, z_{4}+1, z_{5}+1, z_{6}+1$

3. Bob's turn

- Bob looks at the jth number in Alice's list
- If it equals x mod p then $i>=j$
- If not, then i < j
- Bob tells Alice the answer
- Example: 5th number $=z_{5}+1$
- $z_{5}+1=(x \bmod p)+1!=x \bmod p$

Security caveats

- Brute force: Bob looks for q s.t. $\mathrm{E}(\mathrm{q})=\mathrm{m}-\mathrm{j}+2$ - Can figure out whether $\mathrm{i}<=2$
- What if Bob lies to Alice?
- Lots of extensions, generalizations, etc.

Sec. Comp in real life

- Compute over private data
- Health records
- Military cooperation
- Auctions
- Boston wage equity
- ZCash

