Secure computation

With material from Matthew Green, Elaine Shi, CS Unplugged, others
• Secure computation
 • Zero-knowledge proofs
 • Commitment schemes
 • Multiparty computation
Zero-knowledge proofs
• Goal: P proves to V that some statement is true
 • *Without* conveying additional information

• In general, probabilistic
 • Repeat a bunch of times as proof
Example 1: Hallway password

- Does Peggy have the key?
- Both stand in the entrance.
 - When Victor isn’t looking, Peggy picks one hall
 - Victor then yells “GREEN” or “ORANGE”
 - Peggy must come back via the chosen color
- Repeating many times “proves” Peggy has password
 - With high probability
Example 2: Two baseballs

- Peggy has two baseballs: One red, one green
 - Otherwise identical

- Victor is color-blind, thinks they are the same
 - Peggy’s goal: To prove she can distinguish

- Peggy places them in Victor’s hands
 - Victor puts them behind his back, may switch
 - Peggy tells whether he switched
 - As before, repeat many times
Security properties

- Complete: Honest V will be convinced by honest P
- Sound: Honest V can’t* be convinced by cheating P
- Proves nothing to outside observers either way
 - Peggy and Victor can collude by precomputing
- Peggy could cheat with a time machine
 - Victor gets the same info either way
 - Implies that real protocol does not leak
Burning questions

- Why is this crypto?
- Does everyone have to be in the same place?
- Why do we care in real life?
Commitment schemes

COMMITMENT
The chicken is involved. The pig is committed.
Commitment schemes

- Commit to a value but do not show it
 - *Open* it later and prove it hasn’t changed

- Analogy:
 - I pick a number between 1 and 100
 - Write it down and seal it in an envelope
 - You pick odd or even
 - If you’re right, I pay you; else you pay me
 - *Why did I have to write it down?*
Required properties

- Hiding: Commitment reveals nothing about value
- Binding: Can’t open to a different value
Remote coin-flip

• Goal: Flip coin over the telephone
 • Alice flips, Bob chooses heads or tails

• Requires Alice to commit her output
 • In essence, need a one-way function

• Example/activity: Using and/or circuits
Heads = Even input parity
Tails = Odd input parity
Try it! (Small groups)

• “Bob” draws a circuit
• “Alice” commits to an outcome
• “Bob” chooses odd or even parity
• Declare a winner
• Can either of you cheat? How?
Cheating

- Alice can cheat IFF she has two opposite-parity inputs that produce the same output
- Bob can cheat IFF he can predict the input from the output
Commitment via hash

- Alice, Bob pick a random numbers X, Y
 - Alice publishes H(X); Bob publishes H(Y)
- Bob chooses odd or even
 - Reveal X, Y and add them; check sum parity
- Collision resistance: Can’t fake X or Y
- Pre-image resistance: Can’t calculate X or Y
Multiparty computation
• Everyone has a private input
• Together, we compute some related result
• No one’s private input is given away
Example 1: How old are we?

• Goal: Find our average age
 • Without anyone giving away their own age

• Activity: Need five volunteers
 • And five sheets of paper

Setup

- Alice, Bob are **honest but curious**
 - Don’t lie, follow protocol correctly
 - But try to learn from available info

- Security equivalent to **fully trusted** third party
Defining leakage

- Learning $f(a, b)$ gives some information
- What if $f(a, b) = (a + b)$?
- Final security property:
 - Alice learns only info computable from $f(a, b)$, a
 - Bob learns only info computable from $f(a, b)$, b
Example 2: Truth in dating

• After meeting and chatting, Alice and Bonnie want to find out whether they want to date each other.

• If Bonnie says no, Alice doesn’t reveal her answer.
 • And vice versa.

• Essentially secure AND

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bonnie</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO DATE</td>
<td>NO DATE</td>
<td>NO DATE</td>
</tr>
<tr>
<td>NO DATE</td>
<td>DATE</td>
<td>NO DATE</td>
</tr>
<tr>
<td>DATE</td>
<td>NO DATE</td>
<td>NO DATE</td>
</tr>
<tr>
<td>DATE</td>
<td>DATE</td>
<td>DATE</td>
</tr>
</tbody>
</table>
Solution using 5 cards

- Alice and Bob each get two emoji cards: ❤,💣
- Plus one public ❤

- Place cards face down on table as follows:

 A A ❤ B B

- Using this chart:

<table>
<thead>
<tr>
<th>DATE</th>
<th>ALICE</th>
<th>BONNIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>❤ ❤</td>
<td>❤ ❤</td>
</tr>
<tr>
<td>NO DATE</td>
<td>❤ ❤</td>
<td>❤ ❤</td>
</tr>
</tbody>
</table>
Solution, ctd.

- Each gets to privately cyclic-shift the cards X times
- Final results: 3 hearts in a row = match

Equivalent under cyclic shift!
Other sample problems

• Two reporters compare confidential sources
 • To see if they are the same person

• Check for secret society password

• Find out who bid more without revealing your bid

• etc.
Desired properties

• **Resolution**: Find out desired outcome

• **Privacy**:
 • No involved party learns anything else
 • No third party learns anything

• **Security**: No one profits by cheating
 • Can’t know outcome unless other party does

• **Simplicity**: Easy to implement, understand

• **Remoteness**: Don’t need to be co-located
Example: Who is richer?

Yao’s millionaire’s problem (1982)

• Alice (i) and Bob (j) have $1 \leq i,j \leq $6
 • Assumption for simplicity
 • Generalizable to more people, more numbers
 • Later improvements in efficiency

• Also has security limitations
 • For conceptual purposes only
1. Bob’s turn

- Bob chooses a large random number x
- Bob computes $m = E(PK_A, x)$
- Bob sends to Alice: $B = m - j + 1$

Example: $j = 5$, $B = m - 4$
2. Alice’s turn

- Alice generates $y_u = D(SK_A, B + u - 1)$ for $u = 1:6$
 - $y_u = D(SK_A, m - j + u)$

- Alice picks a prime p and generates $z_u = y_u \mod p$
 - Ensure all z’s at least 2 apart or try again

- Example:
 - $z_3 = D(SK_A, m - 2) \mod p$
 - $z_5 = D(SK_A, m) \mod p = x \mod p$
2.5 Still Alice’s turn

- Alice sends p to Bob

- Alice sends 6 numbers to Bob as follows:
 - z_1 .. z_i
 - $z_{i+1} + 1$.. $z_6 + 1$

- Example: $i = 2$
 - $z_1, z_2, z_3 + 1, z_4 + 1, z_5 + 1, z_6 + 1$
3. Bob’s turn

- Bob looks at the jth number in Alice’s list
 - If it equals $x \mod p$ then $i \geq j$
 - If not, then $i < j$
- Bob tells Alice the answer

Example: 5th number $= z_5 + 1$
- $z_5 + 1 = (x \mod p) + 1 \neq x \mod p$
Security caveats

• Brute force: Bob looks for q s.t. $E(q) = m - j + 2$
 • Can figure out whether $i \leq 2$

• What if Bob lies to Alice?

• Lots of extensions, generalizations, etc.
Sec. Comp in real life

• Compute over private data
 • Health records
 • Military cooperation
 • Auctions
 • Boston wage equity

• ZCash