
A Probabilistic View
of Machine Learning, 
Logistic Regression 
CMSC 422
SOHEIL FEIZI
sfeizi@cs.umd.edu

Slides adapted from MARINE CARPUAT

mailto:marine@cs.umd.edu


Today’s topics

• Review Bayes rule

• Review Naïve Bayes

• Logistic Regression



Bayes Rule



Exercise: Applying Bayes Rule

• Consider the 2 random variables
A = You have the flu
B = You just coughed

• Assume
P(A) = 0.05
P(B|A) = 0.8
P(B|not A) = 0.2

• What is P(A|B)?



Using a Joint Distribution



Using a Joint Distribution
• Given the joint distribution, 

we can find the probability 
of any logical expression E 
involving these variables



Using a Joint Distribution

Given the joint distribution,
we can make inferences
– E.g., P(Male|Poor)?

– Or P(Wealth | Gender, Hours)?



Recall: Machine Learning 
as Function Approximation

Problem setting
• Set of possible instances !
• Unknown target function ": ! → %
• Set of function hypotheses & = ℎ ℎ: ! → %}

Input
• Training examples { + , , . , , … + 0 , . 0 } of unknown target 

function "

Output
• Hypothesis ℎ ∈ & that best approximates target function "



Recall: Formal Definition of Binary 
Classification (from CIML)



The Bayes Optimal Classifier
• Assume we know the data generating distribution !

• We define the Bayes Optimal classifier as

• Theorem: Of all possible classifiers, the Bayes Optimal 
classifier achieves the smallest zero/one loss

• Bayes error rate
– Defined as the error rate of the Bayes optimal classifier
– Best error rate we can ever hope to achieve under zero/one loss

If we had access to !, 
Finding an optimal classifier would be trivial!

we don’t have access to !
So let’s try to estimate it instead!



What does “training” mean in 
probabilistic settings?

• Training = estimating ! from a finite training set
– We typically assume that ! comes from a specific family of 

probability distributions
e.g., Bernouilli, Gaussian, etc

– Learning means inferring parameters of that distributions
e.g., mean and covariance of the Gaussian



Training assumption: training 
examples are iid

• Independently and Identically distributed
– i.e. as we draw a sequence of examples from !, 

the n-th draw is independent from the previous n-
1 sample

• This assumption is usually false!
– But sufficiently close to true to be useful



How can we estimate the joint probability 
distribution from data?
What are the challenges?



Maximum Likelihood Estimation

• Find the parameters that maximize the 
probability of the data

• Example: how to model a biased coin?



Maximum Likelihood Estimates

Each coin flip yields a Boolean value for X
X ~ Bernouilli: ! " = $%(1 − $)%

Given a data set D of iid flips, which 
contains *+ ones and *, zeros

!-(.) = $/0(1 − $)/1

2$345 = 67896:- !- . = *+
*+ + *,



Let’s learn a classifier
by learning P(Y|X)

• Goal: learn a classifier P(Y|X) 

• Prediction: 
– Given an example x
– Predict !" = $%&'$() * + = " , = ()



Parameters for P(X,Y) vs. P(Y|X) 

Y = Wealth
X = <Gender, Hours_worked>

Joint probability 
distribution P(X,Y)

Conditional probability 
distribution P(Y|X)



How many parameters
do we need to learn?

Suppose ! = < !$, !&, …!( >
where !* and + are Boolean random variables

Q:  How many parameters do we need to estimate 
,(+|!$, !&, …!()?

A: Too many to estimate P(Y|X) directly from data!



Naïve Bayes Assumption

Naïve Bayes assumes

! "#, "%, …"' ( = ∏+,#
' !("+ |()

i.e., that "+ and "0 are conditionally 
independent given Y, for all 1 ≠ 3



Conditional Independence

• Definition:
X is conditionally independent of Y given Z
if P(X|Y,Z) = P(X|Z)

• Recall that X is independent of Y if P(X|Y)=P(Y)



Naïve Bayes classifier

!" = $%&'$() * + = " , = ()
= $%&'$()*(+ = ")* , = ( + = ")

= $%&'$()*(+ = ")/
012

3
* ,0 = (0 + = ")

Bayes rule
+ Conditional independence assumption 



How many parameters do we need 
to learn? 

• To describe P(Y)?

• To describe ! " = < "%, "', …") > +)
– Without conditional independence assumption?

– With conditional independence assumption?

(Suppose all random variables are Boolean)

1

2(2^d-1)

2d



Training a Naïve Bayes classifier



Naïve Bayes Wrap-up

• An easy to implement classifier, that performs 
well in practice 

• Subtleties
– Often the Xi are not really conditionally 

independent
– What if the Maximum Likelihood estimate for 

P(Xi|Y) is zero?



Logistic Regression

• Binary classification

Sigmoid function



Logistic Regression

• Maximum Likelihood 

Cross-entropy loss function



How to solve it?
• Gradient Descent

• A good property of sigmoid:

• SGD:

• Why? Intuition behind the updates


