A Probabilistic View of Machine Learning, Logistic Regression

CMSC 422 SOHEIL FEIZI sfeizi@cs.umd.edu

Slides adapted from MARINE CARPUAT

Today's topics

• Review Bayes rule

• Review Naïve Bayes

• Logistic Regression

Bayes Rule

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
 Bayes' rule

we call P(A) the "prior"

and P(A|B) the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London,* **53:370-418**

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of *analogical* or *inductive reasoning*...

Exercise: Applying Bayes Rule

- Consider the 2 random variables
 - A = You have the flu
 - B = You just coughed
- Assume
 - P(A) = 0.05 P(B|A) = 0.8 P(B|not A) = 0.2
- What is P(A|B)?

Using a Joint Distribution

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

Using a Joint Distribution

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

 Given the joint distribution, we can find the probability of any logical expression E involving these variables

Using a Joint Distribution

Given the joint distribution, we can make inferences

- E.g., P(Male|Poor)?
- Or P(Wealth | Gender, Hours)?

Recall: Machine Learning as Function Approximation

Problem setting

- Set of possible instances X
- Unknown target function $f: X \to Y$
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$

Input

• Training examples $\{(x^{(1)}, y^{(1)}), \dots (x^{(N)}, y^{(N)})\}$ of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

Recall: Formal Definition of Binary Classification (from CIML)

TASK: BINARY CLASSIFICATION

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$

Compute: A function *f* minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x) \neq y]$

The Bayes Optimal Classifier

- Assume we know the data generating distribution $\ensuremath{\mathcal{D}}$
- We define the **Bayes Optimal classifier** as

What does "training" mean in probabilistic settings?

- Training = estimating \mathcal{D} from a finite training set
 - We typically assume that $\ensuremath{\mathcal{D}}$ comes from a specific family of probability distributions
 - e.g., Bernouilli, Gaussian, etc
 - Learning means inferring parameters of that distributions

e.g., mean and covariance of the Gaussian

Training assumption: training examples are iid

- Independently and Identically distributed
 - i.e. as we draw a sequence of examples from D,
 the n-th draw is independent from the previous n1 sample

- This assumption is usually false!
 - But sufficiently close to true to be useful

How can we estimate the joint probability distribution from data? What are the challenges?

Maximum Likelihood Estimation

• Find the parameters that maximize the probability of the data

• Example: how to model a biased coin?

Maximum Likelihood Estimates

Each coin flip yields a Boolean value for X X ~ Bernouilli: $P(X) = \theta^X (1 - \theta)^X$

Given a data set D of iid flips, which contains α_1 ones and α_0 zeros $P_{\theta}(D) = \theta^{\alpha_1}(1 - \theta)^{\alpha_0}$

 $\hat{\theta}_{MLE} = argmax_{\theta} P_{\theta}(D) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$

Let's learn a classifier by learning P(Y|X)

• Goal: learn a classifier P(Y|X)

- Prediction:
 - Given an example x

- Predict $\hat{y} = argmax_y P(Y = y | X = x)$

Parameters for P(X,Y) vs. P(Y|X)

How many parameters do we need to learn?

Suppose $X = \langle X_1, X_2, ..., X_d \rangle$ where X_i and Y are Boolean random variables

Q: How many parameters do we need to estimate $P(Y|X_1, X_2, ..., X_d)$?

A: Too many to estimate P(Y|X) directly from data!

Naïve Bayes Assumption

Naïve Bayes assumes

$$P(X_1, X_2, ..., X_d | Y) = \prod_{i=1}^d P(X_i | Y)$$

i.e., that X_i and X_j are **conditionally independent** given Y, for all $i \neq j$

Conditional Independence

• Definition:

X is conditionally independent of Y given Z if **P(X|Y,Z) = P(X|Z)**

• Recall that X is independent of Y if P(X|Y)=P(Y)

Naïve Bayes classifier

$$\hat{y} = argmax_{y} P(Y = y | X = x)$$

= $argmax_{y} P(Y = y) P(X = x | Y = y)$
= $argmax_{y} P(Y = y) \prod_{i=1}^{d} P(X_{i} = x_{i} | Y = y)$

Bayes rule

+ Conditional independence assumption

How many parameters do we need to learn?

- To describe P(Y)? 1
- To describe $P(X = \langle X_1, X_2, ..., X_d \rangle | Y)$
 - Without conditional independence assumption?
 2(2^d-1)
 - With conditional independence assumption?
 2d

(Suppose all random variables are Boolean)

Training a Naïve Bayes classifier

Let's assume discrete Xi and Y

TrainNaïveBayes (Data) for each value y_k of Y estimate $\pi_k = P(Y = y_k)$ for each value x_{ij} of X_i estimate $\theta_{ijk} = P(X_i = x_{ij} | Y = y_k)$ $\underbrace{\# examples for which X_i = x_{ij} and Y = y_k}_{\# examples for which Y = y_k}$

Naïve Bayes Wrap-up

• An easy to implement classifier, that performs well in practice

- Subtleties
 - Often the Xi are not really conditionally independent
 - What if the Maximum Likelihood estimate for P(Xi|Y) is zero?

Logistic Regression

• Binary classification

$$P(Y^{(i)} = 1 | X^{(i)}, \theta) = g(\langle \theta, X^{(i)} \rangle)$$
$$P(Y^{(i)} = 0 | X^{(i)}, \theta) = 1 - g(\langle \theta, X^{(i)} \rangle)$$

Sigmoid function $g(z) = \frac{1}{1 + \exp(-z)}$

Logistic Regression

• Maximum Likelihood

Cross-entropy loss function

How to solve it?

• Gradient Descent

• A good property of sigmoid:

$$\nabla_z g(z) = g(z)(1 - g(z))$$

- SGD: $\theta_{k+1} = \theta_k + \eta (Y^i g(\langle \theta, X^i \rangle)) X^{(i)}$
- Why? Intuition behind the updates