
PCA

CMSC 422
SOHEIL FEIZI
sfeizi@cs.umd.edu

mailto:marine@cs.umd.edu

Today’s topics

• SGD with momentum

• Improved NN architectures

• PCA

Try different architectures and training
parameters here:

http://playground.tensorflow.org

Tricky issues with
neural network training

• Sensitive to initialization
– Objective is non-convex, many local optima
– In practice: start with random values rather than

zeros

• Many other hyper-parameters
– Number of hidden units (and potentially hidden

layers)
– Gradient descent learning rate
– Stopping criterion

Neural networks
vs. linear classifiers

Advantages of Neural Networks:
– More expressive
– Less feature engineering

Challenges using Neural Networks:
– Harder to train
– Harder to interpret

Neural Network Architectures

• We focused on a multi-layer feedforward
network

• Many other deeper architectures
– Convolutional networks
– Recurrent networks (LSTMs)
– Dense Nets, ResNets, etc

Issues in Deep Neural Networks
• Long training time

– There are sometimes a lot of training data
– Many iterations (epochs) are typically required for

optimization
– Computing gradients in each iteration takes too much time

Slide credit: adapted from Bohyung Han

Improving on Gradient Descent:
Stochastic Gradient Descent (SGD)

• Update weights for each example

• Mini-batch SGD: Update weights for a small set of
examples

L= "
$% − '$% # () * + 1 = () * − - ./

%

.()

/ = 1
2 1
%∈3

$% − '$% # () * + 1 = () * − - ./
3

.()

+ Fast, online
− Sensitive to noise

+ Fast, online
+ Robust to noise

Slide credit: Bohyung Han

Improving on Gradient Descent:
SGD with Momentum

• Update based on gradients + previous direction

!" # = %!" # − 1 − (1 − %) *+*,"
(#)

- # + 1 = - # + / 0(#)

+ Converge faster
+ Avoid oscillation

Slide credit: Bohyung Han

Improving on Gradient Descent:
SGD with Momentum

Image: http://ruder.io/optimizing-gradient-descent/index.html#momentum

SGD w/o momentum

SGD with momentum
helps dampen
oscillations

Vanishing Gradient Problem
In deep networks
– Gradients in the lower layers are typically extremely small
– Optimizing multi-layer neural networks takes huge amount of

time

!"
!#$%

= '
(

!)%(
!#$%

* +,%(
*)%(

!"
! +,%(

='
(

!)%(
!#$%

* +,%(
*)%(

'
-
#%-

* +,-(
*)-(

!"
! +,-(

Sigmoid

) +,

Slide credit: adapted from Bohyung Han

Derivative of sigmoid in [0,1]

Vanishing Gradient Problem

• Vanishing gradient problem can be mitigated
– Using custom neural network architectures

– Using other non-linearities
• E.g., Rectifier: f(x) = max(0,x)

ResNet

Since last lecture : 20266

Why Neural Networks?

Perceptron
• Proposed by Frank Rosenblatt in 1957
• Real inputs/outputs, threshold activation function

Revival in the 1980’s
Backpropagation discovered in 1970’s but popularized in 1986
• David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams. “Learning

representations by back-propagating errors.” In Nature, 1986.

MLP is a universal approximator
• Can approximate any non-linear function in theory, given enough neurons, data
• Kurt Hornik, Maxwell Stinchcombe, Halbert White. “Multilayer feedforward

networks are universal approximators.” Neural Networks, 1989

Generated lots of excitement and applications

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning/

Neural Networks Applied to Vision
LeNet – vision application

– LeCun, Y; Boser, B; Denker, J; Henderson, D; Howard, R;
Hubbard, W; Jackel, L, “Backpropagation Applied to Handwritten
Zip Code Recognition,” in Neural Computation, 1989

– USPS digit recognition, later check reading

Image credit: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to
document recognition.” Proceedings of the IEEE, 1998.

New “winter” and revival in early 2000’s

New “winter” in the early 2000’s due to

• problems with training NNs

• Support Vector Machines (SVMs), Random Forests
(RF) – easy to train, nice theory

Revival again by 2011-2012

• Name change (“neural networks” -> “deep learning”)

• + Algorithmic developments that made training
somewhat easier

• + Big data + GPU computing

• = performance gains on many tasks (esp Computer
Vision)

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/

Big Data
• ImageNet Large Scale Visual Recognition Challenge

– 1000 categories w/ 1000 images per category
– 1.2 million training images, 50,000 validation, 150,000 testing

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.

AlexNet Architecture

60 million parameters!
Various tricks
• ReLU nonlinearity
• Overlapping pooling
• Local response normalization
• Dropout – set hidden neuron output to 0 with probability .5
• Data augmentation
• Training on GPUs

Alex Krizhevsky, Ilya Sutskeyer, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.

Figure credit: Krizhevsky et al, NIPS 2012.

GPU Computing

• Big data and big models require lots of
computational power

• GPUs
– thousands of cores for parallel operations
– multiple GPUs
– still took about 5-6 days to train AlexNet on two

NVIDIA GTX 580 3GB GPUs (much faster today)

Image Classification Performance

Image Classification Top-5 Errors (%)
Figure from: K. He, X. Zhang, S. Ren, J. Sun. “Deep Residual
Learning for Image Recognition”. arXiv 2015. (slides)

Speech Recognition

Slide credit: Bohyung Han

Recurrent Neural Networks
for Language Modeling

• Speech recognition is difficult due to
ambiguity
– “how to recognize speech”
– or “how to wreck a nice beach“?

• Language model gives probability of next
word given history
– P(“speech”|”how to recognize”)?

Recurrent Neural Networks
Networks with loops
• The output of a layer is used as input for the

same (or lower) layer
• Can model dynamics (e.g. in space or time)

Loops are unrolled
• Now a standard feed-forward network with

many layers
• Suffers from vanishing gradient problem
• In theory, can learn long term memory, in

practice not (Bengio et al, 1994)

Image credit: Chritopher Olah’s blog http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Sepp Hochreiter (1991), Untersuchungen zu dynamischen neuronalen Netzen, Diploma thesis. Institut f.
Informatik, Technische Univ. Munich. Advisor: J. Schmidhuber.
Y. Bengio, P. Simard, P. Frasconi. Learning Long-Term Dependencies with Gradient Descent is Difficult. In TNN
1994.

Long Short Term Memory (LSTM)

• A type of RNN explicitly designed not to have the vanishing
or exploding gradient problem

• Models long-term dependencies
• Memory is propagated and accessed by gates
• Used for speech recognition, language modeling …
Hochreiter, Sepp; and Schmidhuber, Jürgen. “Long Short-Term Memory.” Neural Computation, 1997.

Image credit: Christopher Colah’s blog, http://colah.github.io/posts/2015-08-Understanding-
LSTMs/

Long Short Term Memory (LSTM)

Image credit: Christopher Colah’s blog, http://colah.github.io/posts/2015-08-Understanding-
LSTMs/

What you should know
about deep neural networks

• Why they are difficult to train
– Initialization
– Overfitting
– Vanishing gradient
– Require large number of training examples

• What can be done about it
– Improvements to gradient descent
– Stochastic gradient descent
– Momentum
– Weight decay
– Alternate non-linearities and new architectures

References (& great tutorials) if you want to explore further:
http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-1/
http://cs231n.github.io/neural-networks-1/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-1/
http://cs231n.github.io/neural-networks-1/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Keeping things in perspective…

In 1958, the New York Times reported the perceptron to be
"the embryo of an electronic computer that [the Navy]
expects will be able to walk, talk, see, write, reproduce
itself and be conscious of its existence."

Unsupervised Learning
Principal Component Analysis

Unsupervised Learning

• Discovering hidden structure in data

• What algorithms do we know for unsupervised
learning?
– K-Means Clustering

• Today: how can we learn better representations
of our data points?

Dimensionality Reduction

• Goal: extract hidden lower-dimensional
structure from high dimensional datasets

• Why?
– To visualize data more easily
– To remove noise in data
– To lower resource requirements for

storing/processing data
– To improve classification/clustering

• Linear algebra review:
– Matrix decomposition with eigenvectors and

eigenvalues

Principal Component Analysis

• Goal: Find a projection of the data onto
directions that maximize variance of the
original data set
– Intuition: those are directions in which most

information is encoded

• Definition: Principal Components are
orthogonal directions that capture most of the
variance in the data

PCA: finding principal components

• 1st PC
– Projection of data points along 1st PC

discriminates data most along any one
direction

• 2nd PC
– next orthogonal direction of greatest

variability
• And so on…

Examples of data points in D dimensional space
that can be effectively represented in a d-
dimensional subspace (d < D)

PCA: notation

• Data points
– Represented by matrix X of size NxD
– Let’s assume data is centered

• Principal components are d vectors: !", !$, … !&
!'. !) = 0, , ≠ . and !'. !' = 1

• The sample variance data projected on vector v is
∑'1"2 (4'5!)$ = 7! 5 7!

PCA formally

• Finding vector that maximizes sample variance
of projected data:

!"#$!%& '()()' such that '(' = 1

• A constrained optimization problem
§ Lagrangian folds constraint into objective:
!"#$!%& '()()' − -('(' − 1)

§ Solutions are vectors v such that)()' = -'
§ i.e. eigenvectors of)()(sample covariance matrix)

PCA formally

• The eigenvalue ! denotes the amount of variability
captured along dimension "
– Sample variance of projection "#$# $" = !

• If we rank eigenvalues from large to small
– The 1st PC is the eigenvector of $# $ associated with

largest eigenvalue
– The 2nd PC is the eigenvector of $# $ associated with

2nd largest eigenvalue
– …

Alternative interpretation of PCA

• PCA finds vectors v such that projection on to
these vectors minimizes reconstruction error

Resulting PCA algorithm

How to choose the
hyperparameter K?

• i.e. the number of dimensions

• We can ignore the components of smaller
significance

An example: Eigenfaces

PCA pros and cons

• Pros
– Eigenvector method
– No tuning of the parameters
– No local optima

• Cons
– Only based on covariance (2nd order statistics)
– Limited to linear projections

What you should know

• Principal Components Analysis

– Goal: Find a projection of the data onto directions
that maximize variance of the original data set

– PCA optimization objectives and resulting algorithm

– Why this is useful!

