Kernels

CMSC 422
SOHEIL FEIZI

sfeizi@cs.umd.edu

Slides adapted from MARINE CARPUAT

mailto:marine@cs.umd.edu

Today’s topics

e Kernel methods

* “Kernelizing” the perceptron

Beyond linear classification

* Problem: linear classifiers
— Easy to implement and easy to optimize

— But limited to linear decision boundaries

e What can we do about it?

— Neural networks

* Very expressive but harder to optimize (non-convex
objective)

— Today: Kernels

Kernel Methods

* Goal: keep advantages of linear models, but
make them capture non-linear patterns in
datal

e How?

— By mapping data to higher dimensions where it
exhibits linear patterns

Classifying non-linearly separable data
with a linear classifier: examples

Non-linearly

5855588000600 FEEsEsE X separable data in 1D

. O Becomes linearly

O O separable in new 2D
space
. = defined by the

O 0 following mapping:

x — {x,x%}

Classifying non-linearly separable data

with a linear classifier: examples

X5
x X X
X .
X %] x Non-linearly
XXt o separable data in 2D
X ”’ Is] o ‘\ p
'J e [\‘
l\ [] ® I' X-I
X \\~ o /X xx
e ® -
X x TeemT X X
X X : % .
X X
X X

Becomes linearly separable in the 3D space
defined by the following transformation:

X = {Xl,Xg} — Z = {Xlz, \/§X1X27X22}

Defining feature mappings

Map an original feature vector x
to an expanded version ¢ (x)

Example: quadratic feature mapping represents feature

combinations
$(x) = (1,2x1,2x3,2x3,...,2xp,

x%, X1X2,X1X3,...,X1XD,

X2X1, x%, X2X3,...,X2XD,

X3X1,X3X2, x%, ..., X2XD,
cey

2
XpX1,XDX2, XDX3, ..., XD)

Feature Mappings

* Pros: can help turn non-linear classification
problem into linear problem

* Cons: “feature explosion” creates issues when
training linear classifier in new feature space

— More computationally expensive to train

— More training examples needed to avoid
overfitting

Kernel Methods

* Goal: keep advantages of linear models, but
make them capture non-linear patterns in
datal

* How?
— By mapping data to higher dimensions where it
exhibits linear patterns

— By rewriting linear models so that the mapping
never needs to be explicitly computed

The Kernel Trick

* Rewrite learning algorithms so they only depend on
dot products between two examples

* Replace dot product ¢(x) ' ¢(z)
by kernel function k(x, z)
which computes the dot product implicitly

Example of Kernel function

Consider two examples x = {x1,x} and z = {z, z,}
Let's assume we are given a function k (kernel) that takes as inputs x and z
k(x,z) = (xTz)2

= (xqz + X222)2

2 2 2.2
= X1Z; + X325 +2x1x0z2122

— (Xf’ \/§X1X2,X22)T(Zf, \/521227222)
= ¢(x) é(2)

The above k implicitly defines a mapping ¢ to a higher dimensional space

o(x) = {X127 \/§X1X2, Xzz}

Another example of Kernel
Function (from CIML)

$(x) = (1,2x1,2xp,2x3,...,2xp,
x%, X1X2,X1X3,...,X1XD,
xle,x%, X2X3,...,X2X]D,
X3X1,X3X2, x%, ..., X2XD,

o oy

2
XDX1,XDX2, XDX3, ..., XD)

-

g

What is the function k(x,z) that
can implicitly compute the dot

product P(x) - ¢(z) ?

~

J

o(x) - ¢(z) =14 x121 + X020 + - - - + xpzp + ¥325 + - - - + X1xpz12D+

"+ + XpX1ZpZ1 + XpX2ZpZ2 +
=1+2 Zxdzd + ZZxdxezdze
d da e

=142x-z+ (x-2)°
= (1+x-2)?

e x%z% (9.2)
(9:3)
(9-4)
(9.5)

Kernels: Formally defined

Recall: Each kernel k has an associated feature mapping ¢
¢ takes input x € X (input space) and maps it to F (“feature space”)

Kernel k(x,z) takes two inputs and gives their similarity in F space

o : X—=>F
k © XAxX =R, k(x,z)=¢(x) ¢(z)

F needs to be a vector space with a dot product defined on it

Also called a Hilbert Space

Kernels: Mercer’s condition

* Can any function be used as a kernel function?
* No! it must satisfy Mercer’s condition.

For k to be a kernel function

@ There must exist a Hilbert Space F for which k defines a dot product

@ The above is true if K is a positive definite function

For all square
/dx/dzf(x)k(x, 2)f(z) >0 integrable functions f

Kernels: Constructing combinations
of kernels

Let ki, k> be two kernel functions then the following are as well
o k(x,z) = ki(x,2z) + ka(x,z): direct sum
o k(x,z) = aki(x,2z): scalar product

o k(x,z) = ki(x,2z)k2(x,z): direct product

Commonly Used Kernel Functions

Linear (trivial) Kernel:
k(x,z) = x 'z (mapping function ¢ is identity - no mapping)

Quadratic Kernel:

k(x,z) = (x'2)? or (14 x'z)?
Polynomial Kernel (of degree d):

k(x,z) = (x"z)? or (1+x'z)
Radial Basis Function (RBF) Kernel:

k(x,z) = exp[—7[]x — z|?]

The Kernel Trick

* Rewrite learning algorithms so they only depend on
dot products between two examples

* Replace dot product ¢(x) ' ¢(z)
by kernel function k(x, z)
which computes the dot product implicitly

“Kernelizing” the perceptron

Naive approach: let’s explicitly train a perceptron in
the new feature space

Algorithm 28 PERCEPTRONTRAIN(D, Maxlter)
w4+ 0,b+o0 // initialize weights and bias
. for iter = 1 ... MaxlIter do

for all (x,y) € D do

3

" a+ w-¢(x)+0b /I compute activation for this example

5 if ya < o then

6 w < w+ Yy P(x) // update weights

7 b<—b+y // update bias

8: end if

« end for 4)

.. end for Can we apply the Kernel trick?

.« return w, b Not yet, we need to rewrite the algorithm using
dot products between examples

\ J

“Kernelizing” the perceptron
* Perceptron Representer Theorem

“During a run of the perceptron algorithm, the weight vector

w can always be represented as a linear combination of the
expanded training data”

Proof by induction
(in CIML)

“Kernelizing” the perceptron

We can use the perceptron representer theorem to compute
activations as a dot product between examples

w-d(x)+b= (Zocncl)(xn)) ~p(x) + b definition of w
(9-6)
=) ay {cp(xn) -4>(x)] +b dot products are linear

n

(9-7)

“Kernelizing” the perceptron

Algorithm 29 KERNELIZEDPERCEPTRONTRAIN(D, Maxlter)

a4 0,b<+o0

.. for iter = 1 ... Maxlter do

s forall (x,,,y,) € Ddo

// initialize coefficients and bias

" a< Y, 0mP(Xm) d(x,)+0b // compute activation for this example
5 if y,a < othen

6: Ky < &y + Yp // update coefficients
7 b<b+y // update bias
s: end if

o end for /- Same training algorithm, but

o end for

x return «, b

doesn’t explicitly refers to weights w anymore
only depends on dot products between examples

_

We can apply the kernel trick!

~

Kernel Methods

* Goal: keep advantages of linear models, but
make them capture non-linear patterns in
datal

e How?

— By mapping data to higher dimensions where it
exhibits linear patterns

— By rewriting linear models so that the mapping
never needs to be explicitly computed

Discussion

e Other algorithms can be kernelized:

— See CIML for K-means

e Do Kernels address all the downsides of
“feature explosion”?

— Helps reduce computation cost during training

— But overfitting remains an issue

What you should know

e Kernel functions

— What they are, why they are useful, how they relate to
feature combination

* Kernelized perceptron
— You should be able to derive it and implement it

