
Planning your Game
(and semester)

CMSC425.01 Spring 2019

Find your name and sit at that table

Instructional staff

• Prof. Roger Eastman

• Grad TAs:
• Alejandro Flores Velazco
• Tao Hu

• Ugrad TAs:
• James Biggins
• Jordan Woo

• Office hours to start second week, to be posted

How do you plan for and build a game?

How will 425 help you do this?

Is this course right for you?

Background: What is the game industry like?

• Learn by reading new sites

• gamastura.com
• gamedev.net
• hub.packpub.com

• (Side note: See ebook bundles on
game programming at packpub)

http://gamasutra.com/
https://www.gamedev.net/news/
https://hub.packtpub.com/

What's it like to be a game programmer?
(link: Cignition)

Know Unity with C#
Handle Dynamic network content
Program Multiplatform, with

limited resources
Collaborate/communicate in team

Cignition

Who do you work with?

• Game design team

• Lead game designer
• Artistic director
• Programmer
• Level designer
• Tester
• Sound engineer
• Asset builder

Programmer's role

• Realize designer's vision

• Tweak gameplay and models

• Build supporting tools

• Extend game engine, build own

• (Toy Story 1 – tweak physics of spring to make look feel "right")

Do you want this job?

• Competitive career
• Crunch weeks common
• As good as your last

game

• Unionization push!

• See: Blood, Sweat and
Pixels by Jason Schreier

Game design vs. other software
• Process unpredictable
• Market fickle
• Expenses can be high ($100M or more)
• Develop at bleeding edge – keep advancing gameplay and appearance

Building an airplane in the air

• To build a game you must

• Design something unique, interesting and playable
• Fit into the cultural climate and gamer interests
• Advance tech features

• One approach: Sid Meier, Civilization designer (Baltimore)
• builds fun but crappy version by himself, then team rebuilds

code from scratch

Must it be games?

• Design and navigate in 3D
environments

• Simulate robots

• Prototype manufacturing floor
• (Atlatl Software)

• Implement complex software
rapidly

Game design team collaboration

• Need to be able communicate with all members of team
• Know a little bit of the entire process
• Understand each other's jobs

• Collaboration important this semester
• In class collaborative activities
• Collaborative game projects

Activity 1: organize your "game design" team

• At each table share

• Your names
• Interest in games
• What you want to get out of this class
• What role you'd most like in the industry (and on team)

• Teams assigned randomly, for in class activities
• For final project choose your own teams

Activity 2: Create a game! (Ice breaker)

• At each table

• Assembly your game packet (sheet, crayons, cards, dice, pieces)

• Read the instructions

• Design a game in 10 minutes
• Round robin – take turns making decisions
• Make rapidly

Activity 2: Finish

• Put everything back in the bag
• Staple instructions and bag to board
• Label with your team #

Bkgrd: What's your game history?
• Mine
• Spacewar 1962 mainframe Asteroids 1970s
• Star Trek 1970s paper! arcade
• Rogue 1980s text

Computer games

• Spectre on Mac 1990 - wireframe
• Decent 1994 – 8 bit full 3D FPS
• Starcraft 1998 –isometric 3D strategy

What's next?

• Mobile
• AR
• VR
• 3D sensors Brain control

Going old school? Board games come back

• Board games

• Personal note: for me
• Computer games – play alone
• Board games - social

Activity 3: Your game history?

• At each table share

• What games have you played?
• Do you play now?
• Any experience with AR, VR, new types of games?
• What do you like?

Background: Programming a game

• What does it take to build a game?

Background: Building a game

• What software elements does it take?
• 2D/3D rendering

• Of environment, characters, objects, actions

• Can be complex

• Motion and navigation
• Plan and execute motion from place to place

• Physics
• In "real time" games, simulate physics of object interaction

• AI
• Control motions and behaviors of non-player characters

• Databases and Networking

• Security

How put these elements together?

• Option 1: Write from scratch
• Lots of work!
• But, own, no payments

• Option 2: Assemble libraries (physics, rendering, modeling)
• Less work, less payment
• Less predictable!

• Option 3: Use game engine
• Much less work
• Good engine handles all for you
• But not perfect, and generic- others have same tool

Supportive software: not for gameplay

• Create and manage assets

• 3D modeling – build models of environment

• Maya, Blender, Tinkercad, Pose

• 2D imaging – create textures

• Photoshop, GIMP, etc

• Asset management

• Alienbrain

• Standard software engineering tools to test and maintain

• Github, Buzilla, etc.

• Distribute final game

• Steam, Apple App store, etc.

Activity 4a: Design a computer game

• At each table plan out a game for your team. Answer these questions
(quickly!)

• What type of game? (platformer, FPS, RPG, etc. Multi-player?)
• What design choices?
• Story
• Environment
• Characters
• Gameplay
• Visual look and feel

Activity 4b: Build a computer game

• At each table plan out a game for your team. Answer these questions
(quickly!)

• What platform(s)?
• Any special hardware or peripherals needed?
• What software elements needed?
• Build from scratch or use engine? Which language or engine?
• What assets will you need? How will you make or get them?

CMSC425: Science and engineering of games

• How to build and tweak the software elements of games
• Topics
• Game Engines
• Geometric Programming and Data Structures
• Modelling, and Animation
• AI for Games
• Motion Planning and Navigation
• Networking and Online Games
• Other

• Physics, Audio, Particle systems and other procedural modeling, more

Workload and Syllabus

• Two introductory Unity projects
• Learn to use a range of elements of Unity

• Final group project: Design and build your own game (your own team)
• Two midterm exams
• A limited number of major homeworks
• Minor in class and at home exercises

• Details at http://www.cs.umd.edu/class/spring2019/cmsc425/
• Schedule at Lectures link (has assignments, exams)

http://www.cs.umd.edu/class/spring2019/cmsc425/

Readings

• Required: CMCS425 spring 2018 Lecture 1

• Suggested (and used in this lecture):
• Blood, Sweat and Pixels by Jason Schreier
• Indie Games: from Dream to Delivery, Don Daglow
• *Game On!: Video Game History from Pong and

Pac-Man to Mario, Minecraft, and More, Dustin Hansen

• * I lived the history, didn't need a book!

• Next period: Game Engines and Unity. Look up Unity!

Summary

• After today you should be able:

1) Know and work with your classroom team
2) Describe the role of a game programmer in industry
3) Describe in general terms the members of game design team
4) Describe in general terms how a game gets designed and built
5) List some of the software elements of a game
6) Explain why the game design process is often problematic

