
Colliders and Collisions
CMSC425.01 Spring 2019

Still at tables …

Administrivia

• Next Hw and Project 2 coming
• Project 2 – like Project 2 from previous semesters (animated characters,

navmesh) but crabs on a beach!

• Mini-lectures coming – videos on single topics (Panopto on Elms)

• The M-word – Midterm.

Digression 1: Parametric curves (surfaces)

• Types
• Lines
• Circles
• Cubic (x3 == human perception)
• Spheres
• Bezier curves

• Operations
• Draw with for loop
• Tangent is vector derivative
• Vector representation

Coordinates are function of parameter t
<x(t),y(t),z(t)>

Digression 2: Getting projections right

• Projection of v onto n

! " # = ! # cos (

• if # = 1 then ! " # = ! cos (
• if # = ! = 1 then ! " # = cos (

• When normalize – care about values
• When not – comparisons, signs

n

v

|v|cos(theta)

Today’s questions

1) Detecting collisions
2) Organizing spatial data

Standard collider shapes

(a) Axis-aligned boxes (AABB)
(b) General bounding boxes
(c) Bounding spheres

(ellipsoids)

(d) Capsules
(e) k-DOPs (k-discrete

oriented polytope)

Also – point, mesh,
convex hull

(b)(a) (c) (d) (e)

k = 8

u1
u2

p+

p�
p�

p+
r

p

a

b

r

What would you use?

Examples

Fitting the collider

• Data is a set of points

Fitting the collider

• Centroid and convex hull

Detecting collisions – how?

(a)

y02

y2

y01

y1

x1 x01 x2 x02

(b)

r p

r0

p0

(c)

a

b

a0

b0

(d)

b
b

b0

• AABB x AABB
• Box x Box
• Sphere x Sphere
• Capsule x Capsule

"Easy" cases

• AABB x AABB • Sphere x Sphere

(a)

y02

y2

y01

y1

x1 x01 x2 x02

(b)

r p

r0

p0

(c)

a

b

a0

b0

(d)

b
b

b0

(a)

y02

y2

y01

y1

x1 x01 x2 x02

(b)

r p

r0

p0

(c)

a

b

a0

b0

(d)

b
b

b0

Box to box with rotations

• Rotate one to align with axes

(a)

y02

y2

y01

y1

x1 x01 x2 x02

(b)

r p

r0

p0

(c)

a

b

a0

b0

(d)

b
b

b0

Capsule to capsule

• Distance between two line
segments

(a)

y02

y2

y01

y1

x1 x01 x2 x02

(b)

r p

r0

p0

(c)

a

b

a0

b0

(d)

b
b

b0

Other collisions

• Cone to point (shot gun)
• Sphere to plane (hw)
• Cylinder to point (practice)
• Point in polygon
• Polygon to polygon

How to do many efficiently?

• Hierarchical colliders
• First test bounding box
• If hit then test better collider

• Problem with many
• Better than n-squared
• No obvious sort in 2 or 3D

Sort and sweep algorithm

• Project bounding boxes on one
coordinate
• Sort along that coordinate
• Filter tests to overlaps

Grid

• Overlap shapes on grid
• For each cell hit by shape, create

ptr to shape

• If two shapes in same cell
then need further test

• What size grid?
• How update grid?

(a) (b) (c)

� �
q

pi

j

�
q

pi

j

Grid

• How treat moving and static
objects?
• One agent in static space?

How store grid?

• Row-column order (standard)
• Hashmap
• Space filling order
• Hilbert
• Morton

• Bit shuffle for Morton’s
• See notes

(a) (b) (c)

0

1 2

3 4 5

67

8 9

101112

1314

15

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Row major Hilbert Morton (Z)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

i =

j =

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Quadtrees: hierarchical space decomposition

• Four way division on midpoint
• NW, NE, SW, SE
• Midpt independent of data

• 3D
• Octrees

(a) (c)(b)

SW NW SE NE

SW

NW

SE

NE

K-d trees

• Alternating coordinates
• Divisions based on data

p1

p2

p3

p4 p5

p6

p7

p8

p9
p10

p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

Skeletons and rigging

• Character animation
• Create a skeleton
• Define transforms between parts
• Interpolation transforms to move
• Rig with “flesh”
• Create behavior animations
• Blend between animations for

smooth actions in game
• Can find as Unity Assets
• Use Mecanim tool
• https://www.youtube.com/watch?

v=HPwu7eIwjV8

https://www.youtube.com/watch?v=HPwu7eIwjV8

Step 1: Skeleton and transformations

• Kinematics
• Forward – given

joints and
transformations,
estimate end position
• Reverse – given end

position estimate
transformations

• Forward – “easy”
• Reverse – hard!

30�

(a) (c)

j0

j2 j3 j4

j5
j1

j0

j2 j3

j4

j1

j5

j0

j1

j2 j3

j4

j5

(b)

Readings

• David Mount's lectures on Geometric Data structures and on Skeletal
Animation and Kinematics

• Good tutorial on collisions
• https://www.toptal.com/game/video-game-physics-part-ii-collision-detection-for-solid-objects

https://www.toptal.com/game/video-game-physics-part-ii-collision-detection-for-solid-objects

