Motion planning: Beyond Navmeshes

CMSC425.01 Spring 2019

Administrivia

- Exam being graded
- Project 2 b concepts out, write up soon (add animations to 2 a)

Today's questions

Big question: Making intelligent agents First question: Navigation

Finding paths in polygonal configuration space

- Version 1: Navmesh
- Others?
- Version 7: Randomized placement (sampling)

(a)

(b)

(c)

Finding paths in polygonal configuration space

- Version 1: Navmesh
- Others?
- Version 8: Rapidly-expanded Random Trees (RRTs)

(c)

(d)

Computing shortest path

- Reduce navigation to path finding in graphs
- Directed?
- Weighted?

- $G=(V, E)$
- Vertices $V=\{u, v, \ldots\}$
- Edges $E=\{(u, v), \ldots\}$
- Weight function $\mathrm{w}(u, v) \rightarrow$ reals

Computing shortest path

- Reduce navigation to path finding in graphs
- Directed?
- Weighted?

- Path sequence of nodes

$$
\text { - } P=\left\langle u_{0}, u_{1}, \ldots, u_{k}\right\rangle
$$

- Path cost

$$
\cdot \operatorname{cost}(P)=\sum_{i=0}^{k} w\left(u_{i}, u_{i+1}\right)
$$

- Lowest cost path $\partial(s, t)$

First: what's the problem?

- Compute one shortest path?
- Compute all shortest paths to store?

First: what's the problem?

- Compute path here to there?
- Find fastest way to home base?
- Reverse edges
- Find shortest path to all from home
- Find closest facility (health, etc)?
- Add Supernode connected to all facilities.
- Compute all shortest paths to store?
- Floyd-Warshall

First: what's the problem?

- Find closest facility (health, etc)?
- Add Supernode connected to all facilities.

Uninformed vs. informed search

- Uninformed - follow weights
- Pick next node on distance to $\mathrm{d}[\mathrm{u}]$
- Informed - add bias towards destination
- Heuristic
- Pick next node on distance to goal h(u)

Uninformed search

Informed search

Informed search

- Distance functions
- w(u,v) - distance node u to v
- d[u] - distance traversed from start to node u
- $\operatorname{dist}(\mathrm{u}, \mathrm{t})$ - distance from u to t
- $w(s, 1)=$ \qquad $\operatorname{dist}(1, t)=$ \qquad
- $w(s, 2)=$ \qquad $\operatorname{dist}(1, t)=$ \qquad

Informed search

- Distance functions
- w(u,v) - distance node u to v
- d[u] - distance traversed from start to node u
- dist(u,t) - distance from u to t
- $w(s, 1)=3 \quad \operatorname{dist}(1, t)=6$
- $w(s, 2)=3 \quad \operatorname{dist}(1, t)=4$
- $\operatorname{dist}(\mathrm{u}, \mathrm{t})$ is a heuristic

Less perfect information?

- Can't see rest of graph until you expand it
- Need guess on what's to come
- dist($u, t)$ as Euclidean distance
- Approximates actual cost

Footnote

- Euclidean distance
- distE(p1,p2) = $\operatorname{sqrt}\left((x 1-x 2)^{\wedge} 2+(y 1-y 2)^{\wedge} 2\right)$
- Manhattan distance
- $\operatorname{dist} \mathrm{M}(\mathrm{p} 1, \mathrm{p} 2)=$

$$
a b s(x 1-x 2)+a b s(y 1-y 2)
$$


```
Dijkstra(G, s, t) {
    foreach (node u) { // initialize
            d[u] = +infinity; mark u undiscovered
    }
    d[s] = 0; mark s discovered // distance to source is 0
    repeat forever { // go until finding t
            let u be the discovered node that minimizes d[u]
            if (u == t) return d[t] // arrived at the destination
            else {
            for (each unfinished node v adjacent to u) {
                d[v] = min(d[v], d[u] + w(u,v)) // update d[v]
                mark v discovered
            }
            mark u finished // we're done with u
    }
}
```


Example

- w(u,v) as given
- Start with d array as

- End with?

Example

- w(u,v) as given
- Start with d array as

- End with?

a	b	c	d	e	z
0	3	4	7	5	1


```
BestFirst(G, s, t) {
    foreach (node u) { // initialize
        d[u] = +infinity; mark u undiscovered
    }
    d[s] = 0; mark s discovered // distance to source is 0
    repeat forever { // go until finding t
            let u be the discovered node that minimizes dist(u,t)
            if (u == t) return d[t] // arrived at the destination
            else {
            for (each unfinished node v adjacent to u) {
                d[v] = min(d[v], d[u] + w(u,v)) // update d[v]
                mark v discovered
            }
            mark u finished // we're done with u
    }
}
```


Best first bad case ...

- Trapped in local minimum

A*

- Pick next node to expand based on sum of distance so far and heuristic

$$
f(u)=d[u]+h(u)=d[u]+\operatorname{dist}(u, t)
$$

```
A-Star(G, s, t) {
    foreach (node u) { // initialize
        d[u] = +infinity; mark u undiscovered
    }
    d[s] = 0; mark s discovered // distance to source is 0
    repeat forever { // go until finding t
        let u be the discovered node that minimizes d[u] + dist(u,t)
        if (u == t) return d[t] // arrived at the destination
        else {
            for (each unfinished node v adjacent to u) {
                d[v] = min(d[v], d[u] + w(u,v)) // update d[v]
                mark v discovered
            }
            mark u finished // we're done with u
    }
}
```


A* Example

- Manhattan distance

A* Search - Each entry is $d[u]: f(u)^{\text {a }}$										
Stage	$d[s]$	$d[a]$	$d[b]$	$d[c]$	$d[d]$	$d[e]$	$d[f]$	$d[g]$	$d[h]$	$d[t]$
$h(u)$	15	13	15	17	12	10	9	8	5	0
Init	0:15	$\infty: 13$	$\infty: 15$	$\infty: 17$	$\infty: 12$	$\infty: 10$	∞ :9	∞ :8	∞ : 5	∞ :0
1: s	0	8:13	-	2:17	3:12	-	-	-	-	-
2: d	\downarrow	8:13	-	2:17	3	5:10	6:9	-	-	-
3: e		8:13	-	2:17	\downarrow	5	6:9	7:8	-	-
4: f		8:13	-	2:17		\downarrow	6	7:8	-	15:0
5: t		8:13	-	2:17			\downarrow	7:8	-	15
Final	0	8	∞	2	3	5	6	7	∞	15

Good heuristics

- For A^{*} to compute correctly the heuristic $\mathrm{h}(\mathrm{u})$ must be:
- Admissible:
$\mathrm{h}(\mathrm{u})$ never overestimates the graph distance from node u to goal t
- Consistent:

$$
h\left(u^{\prime}\right)<=\operatorname{delta}\left(u^{\prime}, u^{\prime \prime}\right)+h\left(u^{\prime \prime}\right)
$$

