Motion planning:
Beyond Navmeshes

CMSC425.01 Spring 2019

Administrivia
* Exam being graded ...

* Project 2b concepts out, write up soon (add animations to 2a)

Today’s questions

Big question: Making intelligent agents
First question: Navigation

Finding paths in polygonal configuration
space

e VVersion 1: Navmesh
e Others?

* Version 7: Randomized
placement
(sampling)

Finding paths in polygonal configuration
space

e VVersion 1: Navmesh
e Others?

* Version 8: Rapidly-expanded
Random Trees (RRTs)

P2
pP1
42

Do

Computing shortest path

* Reduce navigation to path
finding in graphs
* Directed?
* Weighted?

G =(V,E)
e VerticesV ={u,v, ..}
* Edges E = { (u,v), ...}
* Weight function w(u, v) — reals

Computing shortest path

* Reduce navigation to path
finding in graphs

* Directed?
* Weighted?

G =(V,E) Path sequence of nodes
 VerticesV ={u,v, ...} * P = (uguyq ..., Ug)

* Edges E = { (u,v), ...}
* Weight function w(u, v) — reals

* Path cost
e cost(P) = Z%‘zow(ui,uiﬂ)

* Lowest cost path d(s, t)

First: what's the problem?

 Compute one shortest path? Compute all shortest paths to store?

First: what's the problem?

 Compute path here to there? Compute all shortest paths to store?
* Floyd-Warshall

* Find fastest way to home base?
* Reverse edges
* Find shortest path to all from home

3 0 13 8 10

14

* Find closest facility (health, etc)?

* Add Supernode connected to all
facilities.

mo O @ >

First: what's the problem?

* Find closest facility (health, etc)? super facility
e Add Supernode connected to all 0.7 ’Q' """" " ()
facilities. :

Uninformed vs. informed search

* Uninformed — follow weights
* Pick next node on distance to d[u]

* Informed — add bias Uninformed search Informed search
towards destination SR

 Heuristic

* Pick next node on
distance to goal h(u)

Informed search

e Distance functions
e w(u,v) -distance nodeutov

e d[u] - distance traversed
from start to node u

e dist(u,t) - distance fromutot

ew(s,1)=_
e w(s,2)=_

dist(1,t)=

dist(1,t)=

Informed search

e Distance functions
e w(u,v) -distance nodeutov

e d[u] - distance traversed
from start to node u

e dist(u,t) - distance fromutot

* w(s,1)=3
* w(s,2)=3

dist(1,t) = 6
dist(1,t) =4

e dist(u,t) is a heuristic

Less perfect information?

* Can't see rest of graph until you O ol iR
expand it : 5{
:/'\,__-_-‘/'_h /\ ______ , /‘\:_l_ _ :
* Need guess on what's to come i A 4

e dist(u,t) as Euclidean distance O--{1 —C
* Approximates actual cost (5\ _____ s s
sl Newzo/ ot Nz,

e e

Footnote

e Euclidean distance

* distE(p1,p2) =
sqrt((x1-x2)72 + (y1-y2)~2)

e Manhattan distance

e distM(p1,p2) =
abs(x1-x2) + abs(y1-y2)

O

O

O

A
-

O

Dijkstra’s Algorithm

Dijkstra(G, s, t) A

foreach (node u) { // initialize
d[u] = +infinity; mark u undiscovered
}
d[s] = 0; mark s discovered // distance to source is O
repeat forever { // go until finding t
let u be the discovered node that minimizes d[ul
if (u == t) return d[t] // arrived at the destination
else {

for (each unfinished node v adjacent to u) {
d[v] = min(d([v], d[u] + w(u,v)) // update dl[v]
mark v discovered

}

mark u finished // we’re done with u

Example

e w(u,v) as given
e Start with d array as

o oo oo o

e End with?
a b C d e Z

DEEEES

Example

e w(u,v) as given
e Start with d array as

o oo oo o

e End with?
a b C d e Z

DEOGED

Best-First Search

BestFirst (G, s, t) {

foreach (node u) { // initialize
d[u] = +infinity; mark u undiscovered
+
d[s] = 0; mark s discovered // distance to source is O
repeat forever { // go until finding t
let u be the discovered node that minimizes dist(u,t)
if (u == t) return d[t] // arrived at the destination
else {

for (each unfinished node v adjacent to u) A
dlv] = min(d[v], d[u] + w(u,v)) // update dl[v]
mark v discovered

¥

mark u finished // we’re done with u

Best first bad case ...

* Trapped in local minimum

> > >
el

oI <
OO @O OO0

IR

A*

* Pick next node to expand based
on sum of distance so far and
heuristic

fu) = du|l+ h(u) = dlu] + dist(u,t)

A-Star Search

A-Star (G, s, t) {

foreach (node u) { // initialize
d[u] = +infinity; mark u undiscovered
}
d[s] = 0; mark s discovered // distance to source is O
repeat forever { // go until finding t
let u be the discovered node that minimizes d[u] + dist(u,t)
if (u == t) return d[t] // arrived at the destination
else {

for (each unfinished node v adjacent to u) {
d[v]l] = min(d[v], d[u] + w(u,v)) // update d[v]
mark v discovered

}

mark u finished // we’re done with u

A* Example

e Manhattan distance

dist;(f,t) =3+6=9

A* Search — Each entry is d[u] : f(u)

Stage | dls] [dla] | db) | did | dd] | dle] | dif) | dlg) | dif] | di)
h(uw) | 15 13 15 17 12 10 9 8 5) 0
Init 0:15 | 00:13 | 00:15 | 00:17 | 00:12 | 00:10 | 00:9 | 00:8 | 00:H | 00:0
1: s 0 8:13 | — 2:17 | 3:12 | - — — — -
2: d l 8:13 | — 2:17 | 3 5:10 | 6:9 | — - -
3: e 8:13 | — 2:17 | | 5 6:9 |78 |~ -
4: f 8:13 | — 2:17 1 6 78 | - 15:0
5t 8:13 | — 2:17 l 78 | — 15
Final | O 8 00 2 3 5) 6 7 00 15

Good heuristics

* For A* to compute correctly the heuristic h(u) must be:

* Admissible: h(u) never overestimates the graph distance from
node u to goal t

* Consistent: h(u') <= delta(u’,u") + h(u")

