Perlin Noise I

CMSC425.01 Spring 2019
Administrivia

• Google form distributed for grading issues

• Final work outlined soon
 • Final homework
 • Final midterm
 • Final project grading standards
Winged edge representations

- Vertex v has coordinates plus one link to incident edge
- Face f has link to one half edge
- Edge (origin u, destination v) has
 - $e.org$: e’s origin
 - $e.twin$: e’s opposite twin half-edge
 - $e.left$: the face on e’s left side
 - $e.next$: the next half-edge after e in counterclockwise order about e’s left face
 - $e.prev$: the previous half-edge to e in counterclockwise order about e’s left face (that is, the next edge in clockwise order).
Winged edge representations

• Question: how traverse all vertices that are neighbors of v in cw order?

```java
vertexNeighborsCW(Vertex v) {
    Edge start = v.incident;
    Edge e = start;
    do {
        output e.dest; // formally: output e.twin.org
        e = e.oprev; // formally: e = e.twin.next
    } while (e != start);
}
```
In class exercise

Given vertex \(v \) in a cell complex of a 2-manifold, the \textit{link} of \(v \) is defined to be the edges that bound the faces that are incident to \(v \), excluding the edges that are incident to \(v \) itself. Present a procedure (in pseudocode) that, given a vertex \(v \) of a DCEL, returns a list \(L \) consisting of the half edges of \(v \)'s link ordered counterclockwise about \(v \). For example, in the figure below, a possible output would be \(\langle e_1, \ldots, e_{11} \rangle \). (Any cyclic permutation would be correct.)
Today’s question

How do you convert the output of a pseudo-random number generator into a smooth, naturalistic function?
Randomness – useful tool

```java
// RandomRain
void setup() {
    size(400,400);
    background(255);
    colorMode(HSB,360,100,100);
}

void draw() {
    float x = random(0,400);
    float y = random(0,400);
    float hue = random(0,60);
    fill(hue,100,100);
    ellipse(x,y,20,20);
}
```
How make it natural and pleasing?

• Pure randomness – white noise
• Each data point independent of rest
White noise

• Pure randomness – white noise
• Each data point independent of rest
• Frequency plot uniform
Pink noise

- Shaped randomness
 - pink noise
- Still independent
- Frequency plot $1/f$
Brown noise

• Random walk – Brownian noise
• Each point random position from last ($\Delta y = \text{random}(-d,d)$)
• Frequency plot $1/f^2$
Colors of noise

• Music – close to pink noise $1/f$
• Natural objects – close to brown $1/f^2$
• Some physical objects – close to white $1/f^0$
• Model object,

Generating $1/f^x$ noise

- Fourier Cosine (sine) Series
- Frequency set by n

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \left(\frac{n\pi x}{L} \right)$$
Generating $1/f^x$ noise

- Fourier Cosine (sine) Series
- Frequency set by n

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \left(\frac{n\pi x}{L} \right) \]

- Generate random terms of frequency, phase
- Decrease amplitude (height) as you increase frequency (n)
More energy higher frequencies => rugged
Application: midpoint displacement

- Recursive curve generation
- Given two points:
 - Create perp bisector
 - Randomly pick t in (-h,h), generate point
 - Repeat for two new line segments
- Works in 3D
Application: midpoint displacement

• Recursive curve generation
 • Given two points:
 • Create perp bisector
 • Randomly pick t in $(-h, h)$, generate point
 • Repeat for two new line segments
 • Works in 3D

• Question
 • How would you tune midpoint displacement to get more or less rugged landscapes?
Perlin noise

• Ken Perlin 1983
• (a) height map (b) resulting landscape
Perlin noise

• Ken Perlin 1983
• Vary frequency component => control ruggedness
Noise fcn $f(x)$ - interpolating random points

- Generate series $Y = \langle y_0, y_1, y_2, \ldots, y_n \rangle$
- at uniformly placed $X = \langle x_0, x_1, x_2, \ldots, x_n \rangle$

$$f_\ell(x) = \text{lerp}(y_i, y_{i+1}, \alpha), \quad \text{where } i = \lfloor x \rfloor \text{ and } \alpha = x \mod 1$$
Interpolating weight functions

- Generate series
 - \[Y = \langle y_0, y_1, y_2, \ldots, y_n \rangle \]
 - \[X = \langle x_0, x_1, x_2, \ldots, x_n \rangle \]
- \[f_\ell(x) = \text{lerp}(y_i, y_{i+1}, \alpha), \]
 where \(i = \lfloor x \rfloor \) and \(\alpha = x \mod 1 \)
Interpolating weight functions

Cosine – smoother because

Slower to leave p0

Faster to arrive at p1
\(\alpha \sin(\omega t) \)

- **Wavelength**: The distance between successive wave crests
- **Frequency**: The number of crests per unit distance, that is, the reciprocal of the wavelength
- **Amplitude**: The height of the crests

- \(\alpha \) – amplitude
- \(\omega \) – frequency
- \(2\pi/\omega \) – wavelength
Periodic noise function

- $f(x)$ defined on range $[0,n]$
- With $f(0) = f(n)$

- Now define

- $\text{noise}(t) = f(t \mod n)$

- *Not sine* – randomly created
- Same curve – self-similar
Frequency octaves

- noise(t)
- noise(2t)
- noise(4t)
- ...
- noise(2^i t)
Persistence

\[p^0 \text{noise}(t) \]
\[p^1 \text{noise}(2t) \]
\[p^2 \text{noise}(4t) \]
\[\ldots \]
\[p^i \text{noise}(2^it) \]

\[\text{perlin}(t) = \sum_{i=0}^{k} p^i \text{noise}(2^it) \]

\[p = \frac{1}{2} \]
Perlin noise summary

• Perlin noise is
 • Constant after generation
 • Periodic
 • Fractally self-similar

• Unity
 public static float PerlinNoise(float x, float y);

 returns value in [0,1.0]

 (Set y = constants to get 1D function)

https://cpetry.github.io/TextureGenerator-Online/
float[,] heights = new float[width, height];

for (int i = 0; i < width; i++) {
 for (int k = 0; k < height; k++) {
 heights[i,k] = baseHeight + (float)hillHeight *
 (Mathf.PerlinNoise (
 ((float)i / (float)width) * tileSize,
 ((float)k / (float)height) * tileSize));
 }
}

terrain.terrainData.SetHeights (0, 0, heights);

Question

- How would the idea of multiple scales apply to
 - Generating plants for a game
 - Generating cities/towns/etc for a game
 - Creating plot variations/bosses
Problem – configuration spaces

- How many dimensions are there in the configuration spaces for each of the following motion-planning problems. Justify your answer in each case by explaining what each coordinate of the space corresponds to.
- (i) Moving a cylindrical shape in 3-dimensional space, which may be translated and rotated (see the figure below (a)).
- (ii) Moving a brick in 3-dimensional space, which may be translated and rotated (see the figure below (b)).
- (iii) Moving a pair of scissors in 3-dimensional space, which may be translated, rotated, and swung open and closed (see the figure below (c)).
Problem – Fractal curve

• Derive an L-system that generates FL and FR. In particular, please provide the recursive rules for FL and FR.

• Consider the curve FL in the limit. Derive its fractal dimension.

• Each generation distances are scaled by $\sigma = 1/5$, and each individual segment of the basic length is replaced by 25 segments of the next smaller size.
Problem – DECL intersection

• Compute a list

\[L = \langle e_1, e_2, \ldots, e_m \rangle \]

of edges that intersect a line segment \(ab \)

• Given:
 • Faces \(f_a \) and \(f_b \) that contain \(a \) and \(b \), respectively
 • Function \(e.\text{cross}(a,b) \) that returns true/false if edge \(e \) crosses \(ab \)