Geometry and Geometric Programming II

CMSC425.01 Spring 2019

Still at tables ...

Administrivia

- Project 1 submission
- Name as follows: Lastname-Firstname.zip.
- For example, for TA Flores that would be Flores-Alejandro.zip
- From the project folder, delete all folders except for Assets and ProjectSettings.
- Library, Packages, Logs, and Temp are not necessary.
- Lectures online
- Working to improve them - better audio, better handwriting
- Get them up faster
- Looking for additional readings
- http://www.hiteshpatel.co.in/ebook/cg/Computer Graphics C Version.pdf
- https://nccastaff.bournemouth.ac.uk/jmacey/CGF/slides/Lecture6VectorsAndMatrices4up.pdf

Today's question

Computing distances, directions, orientations

425 != 427

- We will do considerable math from 427, but not all

Objectives in 425:

- Solve some problems important in game design in particular
- Introduce you to graphics math thinking so you can pick on your own

Review from last class. Questions?

- After today you should be able to use:

1) Affine data types and operations Vector addition, point subtraction, point-vector additions, etc.
2) Affine/convex combinations
3) Euclidean
4) Dot/inner product
5) Length, normalization, distance, angle, orthogonality
6) Orthogonal projection
7) Doing it in Unity

Review: point-vector line $r=p+t v$

- Line between $p(100,400)$ and $q(400,100)$
- (y inverted, 0 at top)
- Parametric in t
- Formula in this case?

Review: point-vector line

$$
r=p+t v
$$

- Line between $p(100,400)$ and $q(400,100)$
- (y inverted, 0 at top)
- Parametric in t
- Formula in this case?

$$
r=(100,400)+t *(300,-300)
$$

Code:

$$
\begin{aligned}
& r x=100+t * 300 ; \\
& r y=400+t *-300 ;
\end{aligned}
$$

Review: point-vector line

$r=p+t v$

- Processing version

```
void draw () {
    background (255);
    fill(255,0,0);
    line(100,400,400,100);
    ellipse(100,400,20,20);
    ellipse(400,100,20,20);
    float t = map(mouseX,0,width,0,1);
    fill(t*255,0,(1-t)*255);
    float x = 100 + t * 300;
    float y = 400 + t * -300;
    ellipse(x,y,20,20);
}
```

Review: point-vector line

$$
r=p+t v
$$

- Unity version

Vector3.Lerp

```
public static Vector3 Lerp(Vector3 \(\mathbf{a}\), Vector3 \(\mathbf{b}\), float \(\mathbf{t}\) );
```


Description

Linearly interpolates between two vectors.
Vector3 $\mathrm{p} 1=$ new $\operatorname{Vector}(100 f, 400 f, 0)$;
Vector3 p2 = new Vector (100f,400f,0);
Vector3 $r=\operatorname{Vector} 3 . \operatorname{lerp}(p 1, p 2,0.5 f)$;

Lerping to chase

- https://processing.org/examples/interpolate.htm|
- Go 50% of distance to object chased
- Slows down (eases) as you approach

Lerping to tween

- Interpolate corresponding points on two shapes
- Processing example on website
- Here polyline: array of points

Question 1: Perpendicular bisector?

- What's the point-vector form of the line perpendicular to a line segment and through the midpoint? Given p1, p2.

Question 1: Perpendicular bisector?

- What's the point-vector form of the line perpendicular to a line segment and through the midpoint? Given p1, p2 $=(5,10),(30,15)$
- Step 1: line p 1 to p 2 is $\mathrm{r}(\mathrm{t})=\mathrm{p} 1+\mathrm{t}^{*}(\mathrm{p} 2-\mathrm{p} 2)$
- Step 2: Let v = p2-p1
- Step 3: midpoint is $m=(p 1+p 2) / 2$
- Step 4: perp vector is $v^{\prime}=\langle-y, x>$
- Step 5: $r^{\prime}(\mathrm{t})=\mathrm{m}+\mathrm{t} * \mathrm{v}^{\prime}$

Question 1: Perpendicular bisector?

- Unity version? Input: p1, p2

Output: p, vin p+tv

- Step 1: line p 1 to p 2 is $\mathrm{r}(\mathrm{t})=\mathrm{p} 1+\mathrm{t}^{*}(\mathrm{p} 2-\mathrm{p} 2)$
- Step 2: Let v = p2-p1
- Step 3: midpoint is $m=(p 1+p 2) / 2$
- Step 4: perp vector is $v^{\prime}=\langle-y, x\rangle$
- Step 5: $r^{\prime}(\mathrm{t})=\mathrm{m}+\mathrm{t}^{*} \mathrm{v}^{\prime}$

Vector2.Perpendicular

Question 1: Perpendicular bisector?

- Unity version? Input: p1, p2
- Step 1: line p 1 to p 2 is $\mathrm{r}(\mathrm{t})=\mathrm{p} 1+\mathrm{t}^{*}(\mathrm{p} 2-\mathrm{p} 2)$
- Step 2: Let v = p2-p1
- Step 3: midpoint is $m=(p 1+p 2) / 2$
- Step 4: perp vector is $v^{\prime}=\langle-y, x\rangle$
- Step 5: $r^{\prime}(\mathrm{t})=\mathrm{m}+\mathrm{t} * \mathrm{v}^{\prime}$

Vector2.Perpendicular

Application: midpoint displacement

- Recursive curve generation
- Given two points:
- Create perp bisector
- Randomly pick t, generate point
- Repeat for two new line segments
- Works in 3D

Randomness of $t=>$ roughness

- Mountain ranges, terrain, coastlines

Back to orthogonal projection

Orthogonal projection: Given a vector \vec{u} and a nonzero vector \vec{v}, it is often convenient to decompose \vec{u} into the sum of two vectors $\vec{u}=\vec{u}_{1}+\vec{u}_{2}$, such that \vec{u}_{1} is parallel to \vec{v} and \vec{u}_{2} is orthogonal to \vec{v}.

$$
\vec{u}_{1} \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{v} \cdot \vec{v})} \vec{v}, \quad \quad \vec{u}_{2} \leftarrow \vec{u}-\vec{u}_{1}
$$

Problem 10: Find orthogonal projection

- Given $\mathrm{p}=<1,1>$ and $\mathrm{q}=<1,4>$, what the orthogonal projection of q onto p ?

Leaving Powerpoint behind ...

- To the Chalkboard!

Given vectors u, v, and w, all of type Vector3, the following operators are supported:

```
u = v + w; // vector addition
u = v - w; // vector subtraction
if (u == v || u != w) { ... } // vector comparison
u = v * 2.0f; // scalar multiplication
v = w / 2.0f; // scalar division
```

You can access the components of a Vector3 using as either using axis names, such as, u.x, u.y, and $u . z$, or through indexing, such as $u[0], u[1]$, and $u[2]$.
The Vector3 class also has the following members and static functions.

```
float x = v.magnitude; // length of v
Vector3 u = v.normalize; // unit vector in v's direction
float a = Vector3.Angle (u, v); // angle (degrees) between u and v
float b = Vector3.Dot (u, v); // dot product between u and v
Vector3 u1 = Vector3.Project (u, v); // orthog proj of u onto v
Vector3 u2 = Vector3.ProjectOnPlane (u, v); // orthogonal complement
```

Some of the Vector3 functions apply when the objects are interpreted as points. Let p and q be points declared to be of type Vector3. The function Vector3.Lerp is short for linear interpolation. It is essentially a two-point special case of a convex combination. (The combination parameter is assumed to lie between 0 and 1.)

```
float b = Vector3.Distance (p, q); // distance between p and q
Vector3 midpoint = Vector3.Lerp(p, q, 0.5f); // convex combination
```


Readings

- David Mount's lecture on Geometry and Geometric Programming

