
Geometry and Geometric
Programming II

CMSC425.01 Spring 2019

Still at tables …

Administrivia

• Project 1 submission
• Name as follows: Lastname-Firstname.zip.

• For example, for TA Flores that would be Flores-Alejandro.zip

• From the project folder, delete all folders except for Assets and ProjectSettings.

• Library, Packages, Logs, and Temp are not necessary.

• Lectures online
• Working to improve them – better audio, better handwriting

• Get them up faster

• Looking for additional readings
• http://www.hiteshpatel.co.in/ebook/cg/Computer_Graphics_C_Version.pdf

• https://nccastaff.bournemouth.ac.uk/jmacey/CGF/slides/Lecture6VectorsAndMatrices4up.pdf

http://www.hiteshpatel.co.in/ebook/cg/Computer_Graphics_C_Version.pdf
https://nccastaff.bournemouth.ac.uk/jmacey/CGF/slides/Lecture6VectorsAndMatrices4up.pdf

Today’s question

Computing distances, directions,
orientations

425 != 427

• We will do considerable math from 427, but not all

Objectives in 425:

• Solve some problems important in game design in particular

• Introduce you to graphics math thinking so you can pick on your own

Review from last class. Questions?

• After today you should be able to use:
1) Affine data types and operations

Vector addition, point subtraction, point-vector additions, etc.

2) Affine/convex combinations
3) Euclidean

1) Dot/inner product
2) Length, normalization, distance, angle, orthogonality

4) Orthogonal projection
5) Doing it in Unity

Review: point-vector line ! = # + %&
• Line between p (100,400) and q (400,100)
• (y inverted, 0 at top)
• Parametric in t
• Formula in this case?

Review: point-vector line ! = # + %&
• Line between p (100,400) and q (400,100)
• (y inverted, 0 at top)
• Parametric in t
• Formula in this case?

! = 100,400 + % ∗ (300,−300)

Code:
rx = 100 + t * 300;
ry = 400 + t * -300;

Review: point-vector line ! = # + %&
• Processing version

Review: point-vector line ! = # + %&
• Unity version

Vector3 p1 = new Vector(100f,400f,0);
Vector3 p2 = new Vector(100f,400f,0);
Vector3 r = Vector3.lerp(p1,p2,0.5f);

Lerping to chase

• https://processing.org/examples/interpolate.html

• Go 50% of distance to object chased
• Slows down (eases) as you approach

https://processing.org/examples/interpolate.html

Lerping to tween

• Interpolate corresponding points on two shapes
• Processing example on website

• Here polyline: array of points

Question 1: Perpendicular bisector?

• What’s the point-vector form of the line perpendicular to a line
segment and through the midpoint? Given p1, p2.

P1

P2

P3

d

d

d

Question 1: Perpendicular bisector?

• What’s the point-vector form of the line perpendicular to a line
segment and through the midpoint? Given p1, p2 = (5,10),(30,15)

• Step 1: line p1 to p2 is r(t) = p1 + t*(p2-p2)
• Step 2: Let v = p2-p1
• Step 3: midpoint is m = (p1+p2)/2
• Step 4: perp vector is v’ = <-y,x>
• Step 5: r’(t) = m + t * v’

P1

P2

P3

d

d

d

Question 1: Perpendicular bisector?

• Unity version? Input: p1, p2 Output: p, v in p+tv

• Step 1: line p1 to p2 is r(t) = p1 + t*(p2-p2)
• Step 2: Let v = p2-p1

• Step 3: midpoint is m = (p1+p2)/2

• Step 4: perp vector is v’ = <-y,x>
• Step 5: r’(t) = m + t * v’

Question 1: Perpendicular bisector?

• Unity version? Input: p1, p2 Output: p, vperp in p+t*verp

• Step 1: line p1 to p2 is r(t) = p1 + t*(p2-p2) Vector2 m = (p1+p2)/2.0f;
• Step 2: Let v = p2-p1 Vector2 v = p2 – p1;
• Step 3: midpoint is m = (p1+p2)/2 Vector2 vperp
• Step 4: perp vector is v’ = <-y,x> = Vector2.perpendicular(v);
• Step 5: r’(t) = m + t * v’ // result in m, vperp

Application: midpoint displacement

• Recursive curve generation
• Given two points:
• Create perp bisector
• Randomly pick t, generate point
• Repeat for two new line segments

• Works in 3D

Randomness of t => roughness

Application: midpoint displacement

• Mountain ranges, terrain, coastlines

Back to orthogonal projection

Problem 10: Find orthogonal projection

• Given p = <1,1> and q=<1,4>, what the orthogonal projection of q
onto p?

Leaving Powerpoint behind …

• To the Chalkboard!

Readings

• David Mount's lecture on Geometry and Geometric Programming

