
Geometry and Geometric
Programming III

CMSC425.01 Spring 2019

Still at tables …

Administrivia

• Instant Hw1 due

• Project 1a under grading

• Review Project 1b Thursday

• Full Hw1 coming soon

Today’s question

Computing AND changing distances,
directions and orientations

Back to orthogonal projection

2D frame of reference

Big idea – frame of reference
Global or local coordinate system in which to define pts and vectors

• 2D • 3D
Y

X

Z

Understand: work through examples

• Start with obvious example
• u = <1,1>
• v = <1,0>

!" ← $%&
($%&) *⃗, !, ← ! − !"

u=<1,1>

v=<1,0>

u2=?

u1=?

Understand: work through examples

• Start with obvious example
• u = <1,1>
• v = <1,0>

• u1 = 1/1*<1,0>
• u2 = <1,1>-<1,0>

= <0,1>

u projects onto <1,0>, <0,1>

!" ← $%&
($%&) *⃗, !, ← ! − !"

u=<1,1>

v=<1,0>

u2=?

u1=?

Understand: work through examples

• Work slowly to complex
• u = <0,1>
• v = <1,1>

!" ← $%&
($%&) *⃗, !, ← ! − !"

u=<1,1>

v=<1,0>

u2=?

u1=?

Understand: work through examples

• Work slowly to complex
• u = <0,1>
• v = <1,1>

• u1 = (u•v)/(v•v) v
= ½ <1,1> = < ½, ½ >

• u2 = u – u1 = <0,1> - < ½, ½ >
= < - ½ , ½ >

!" ← $%&
($%&) *⃗, !, ← ! − !"

v=<1,1>u=<0,1>u2?

Observation: are u1, u2 normal vectors?

• u1 = < ½, ½ >
• u2 = < - ½ , ½ >

!" ← $%&
($%&) *⃗, !, ← ! − !"

v=<1,1>u=<0,1>u2?

Observation: are u1, u2 normal vectors?

• u1 = < ½, ½ >
• u2 = < - ½ , ½ >

• |u1| = sqrt(¼ + ¼) = sqrt(½)

u1 = < ½, ½ > /sqrt(1/2)
= <sqrt(2)/2, sqrt(2)/2>

NO

!" ← $%&
($%&) *⃗, !, ← ! − !"

v=<1,1>u=<0,1>u2?

Chalkboard work – solving with perp vector

• Using perp vector to create orthonormal basis
• Not just orthogonal

• Ortho – at right angles
• Normal – each vector is unit length

• Orthonormal basis gives us local frame of reference

Octave Online – working through examples

• Good for doing examples,
verifying equations
• Vectors, Matrices, operations
• Open source version of Matlab
• Can also use app
• Or link Octave fcns externally to

C or other languages

Instant Hw1 – Ray – circle intersection

• Does the ray defined by p and v intersect the circle
defined by c and r?

p
v

rC

p

v rC

True False

Instant Hw1 – Ray – circle intersection

• Does the ray defined by p and v intersect the circle
defined by c and r?

• Answers:
A) Do equations p(t) = p + tv and (x-xc)2 + (y-yc)2 = r^2 have solution?
B) Is sine of angle * length to circle less than radius?
C) Length of projection of normal less than radius?

Instant Hw1 – Ray – circle intersection

• Does the ray defined by p and v intersect the circle
defined by c and r?

C) Length of projection of normal less than radius?
1) Compute v_perp
2) Normalize v_perp
3) Distance center to line: PC•v_perp
4) Is PC•v_perp < r ?

p

v r
CPC

v_perp

Moving to 3D – frame of reference

• Left handed system XYZ
Y

X

Z

Moving to 3D – frame of reference

• In Unity – (right, up, forward)

• Forward – moving forward

• Up – a sense of gravity

• Right – turn direction

Y -Transform.up

X - Transform.right

Z - Transform.forward

Working in 3D – cross product

• Cross product of two vectors
• Right handed system! (Unity is LHS)

Working in 3D – cross product

• Cross product of two vectors
• Right handed system! (Unity is LHS)

• Cross product is
• Skew symmetric. u x v = - v x u
• Non associative. (u x v)x w != ux (v x w)
• Bilinear. au x (v + w) = a(u x v + u x w)

Computing cross product

• Matrix determinant approach

• ex = <1,0,0>
• ey = <0,1,0>
• ez = <0,0,1>

• Will review matrix operations

Applying cross product

• Computing normal vector
• To triangle
• To plane

• Computing local 3D orthonormal
basis

• Point-normal form of plane
• n•(p-v0) = 0 means p is on the plane

Tiny Planet example

• Given p, c and q
• Compute f, u and r

Tiny Planet example

• Given p, c and q
• Compute f, u and r

• u = normalize(p-c)
• r = normalize((q-c) x (u))
• f = u x r

Sin rule for cross products

• Relates magnitude of cross product to
sin of angle and area of parallelegram

• If a x b = 0 then …?

• If |a|=|b|=1 and |a x b| = 1, then ...?

• In general, the smaller |a x b|, the less
numerically stable the result

Homogeneous coordinates: vectors

• Step 1: Represent vectors as linear combinations of others: v = <a0,a1>

• u0 and u1 are basis vectors

Homogeneous coordinates: points

• Step 2: Add origin to sum

• Now
• point = <x,y,1>
• vector = <x,y,0>

Affine transformations

• Key: translation, rotation, scale

First version: coordinate based equations

• Translation by v: q = p + T(v) Add vector v
• Scale by a: q = a p Multiply by scalar a
• Rotate by t: (qx,qy) = <px*cos(t) – py*sin(t), px*sin(t) + py*cos(t)>

• Repeated scalings and translations:

• q = a (p + T(V)) = a ((a p +T(V)) + T(v)) = and so on …

• Complex

Second version: Homogeneous coordinates

• Unify all transformations in matrix notation

Chalkboard – review all transformations

Defining rotations
• Euler angles Roll – around forward direction
• Angle Axis Pitch – around right direction
• Quaternions Yaw – around up direction

• In Unity
transform.Rotate(x, y, z)) - Euler angles in order z, x, y

Defining rotations
• Angle Axis

Interpolating transformations

• Translation. Easy – move v*dt each frame
• Scale. Easy – scale by s*dt each frame

• Interpolating rotations? Harder

• Interpolate Euler angles? Doesn’t work well
• Interpolate Axis Angle? Better
• Interpolate Quaternions? Best Why Unity uses them.

Activity 4b: Build a computer game

• At each table plan out a game for your team. Answer these questions
(quickly!)

• What platform(s)?
• Any special hardware or peripherals needed?
• What software elements needed?
• Build from scratch or use engine? Which language or engine?
• What assets will you need? How will you make or get them?

Readings

• David Mount's lectures on Geometry and Geometric Programming

