Geometry and Geometric
Programming ||

CMSC425.01 Spring 2019

Still at tables ...

Administrivia

* Instant Hw1 due

* Project 1a under grading

* Review Project 1b Thursday

* Full Hw1 coming soon

Today’s question

Computing AND changing distances,
directions and orientations

Back to orthogonal projection

Orthogonal projection: Given a vector w and a nonzero vector v, it is often convenient to
decompose u into the sum of two vectors w = w; + us, such that u; is parallel to v and
s is orthogonal to v.

, (4 -0) 4 L
Uy <— (?7?7)?), Uo < U — Uy

2D frame of reference

Big idea — frame of reference

Global or local coordinate system in which to define pts and vectors

* 2D * 3D

Understand: work through examples

» Start with obvious example TAPECAC)N, S Sy S
1 (ﬁ"l_j)) 2 1
*u=<1,1>
e v=<]1,0> A /
u2="? u=<1,1>
>
v=<1,0>

Understand: work through examples

e Start with obvious example U, « o) 5 U, < U — Uy
° U= <1’1> (u.v)
ev=<1,0>

e ul=1/1*%<1,0> u2="? u=<1,1>

*u2 =<1,1>-<1,0>
=<0,1>

v=<1,0>

u projects onto <1,0>,<0,1> Y=

Understand: work through examples

* Work slowly to complex TAPECAC)N, S Sy S
1 (ﬁ.l—})) 2 1
*u=<0,1>
ev=<]1> A /
u2="2? u=<1,1>
>
v=<1,0>

Understand: work through examples

* Work slowly to complex
*u=<0,1>
ev=<]1,1>

* ul = (uev)/(vev) v
=%<1,1>=<%, %>
*u2=u—-ul=<0,1>-<%, %>

=<-,n>

—

U, <

AN

(u-v)
(u-v)

u2?

B U, e d—1,

/

u=<0,1> v=<1,1>

/

Observation: are ul, u2 normal vectors?

cul=<n %>
*u2=<-%,%>

U, <

AN

(u-

—_ —

(u-v)

u2?

U, e -1

-/

u=<0,1> v=<1,1>

/

Observation: are ul, u2 normal vectors?

—_ (ﬁ"l_j) - —- - —_
ul — (ﬁl_j) U, uz — Uu-— u1
cul=<h%>
*u2=<-%,%>) /
° |u1| :Sqrt(%+%) :Sqrt(‘yz) u2? u=<0,1> v=<1,1>

ul =<%, %> /[sqrt(1/2) / -

= <sqrt(2)/2, sqrt(2)/2>

NO

Chalkboard work — solving with perp vector

e Using perp vector to create orthonormal basis
* Not just orthogonal

* Ortho — at right angles
* Normal — each vector is unit length

* Orthonormal basis gives us local frame of reference

Octave Online — working through examples

e Good for doing examples,
verifying equations

* Vectors, Matrices, operations
e Open source version of Matlab
e Can also use app

* Or link Octave fcns externally to
C or other languages

000 < 0

iiii Shopping v Research v Hobbies v News v Electronics v Educational v Apple v Import to Mendele

octave:2> ¢ = [1,2]

1 2

octave:3> p = [0,0]
p =

8 0

octave:4> v=[1,1]
vV =

1 1

octave:5> dot(v, c-p)
ans = 3

Instant Hw1 — Ray — circle intersection

* Does the ray defined by p and v intersect the circle
defined by c and r?

_— e

True False

Instant Hw1 — Ray — circle intersection

* Does the ray defined by p and v intersect the circle
defined by c and r?

* Answers:
A) Do equations p(t) = p + tv and (x-xc)? + (y-yc)? = rA2 have solution?
B) Is sine of angle * length to circle less than radius?

C) Length of projection of normal less than radius?

Instant Hw1 — Ray — circle intersection

* Does the ray defined by p and v intersect the circle
defined by c and r?

C) Length of projection of normal less than radius? ol
K
1) Compute v_perp ’

e vV_perp
2) Normalize v_perp /
3) Distance center to line: PCev_perp

N

4) |s PCev_perp<r? %PC

P

Moving to 3D — frame of reference

* Left handed system XYZ A
Y

Moving to 3D — frame of reference

* In Unity — (right, up, forward) $ Y -Transform.up
* Forward — moving forward
Z - Transform.forward

* Up — a sense of gravity

e Right — turn direction

>
X - Transform.right

Working in 3D — cross product

* Cross product of two vectors
 Right handed system! (Unity is LHS)

”ul': - “:I'U
U X U= UslVyp — Ugpl- :
l’.“ I..u - l‘.u‘.'r

L X = —(uxuv)

Working in 3D — cross product

* Cross product of two vectors
 Right handed system! (Unity is LHS)

‘ly": - ‘l:"”
U X U= UsVyp — UgpVs :
Uy Uy — Uy Uy

* Cross product is
e Skew symmetric.uxv=-vxu
e Non associative. (uxv)x w I=ux (v x w)
 Bilinear.aux(v+w)=a(uxv+uxw)

i

1!

11

0 X = —(uxuv)

Computing cross product

‘lu‘.: - ‘t:‘.y

: : U X U= U2Vy — Uy Vs
* Matrix determinant approach S
(l‘rl-” - ””"_r
(_-::rf Ei‘_r; F,
X T = | Uy Uy U,
Vyp Uy Uz
e ex=<1,0,0>
. ey =<0,1,0> | l
* e2=<0,0,1> 0 X = —{uxv)

* Will review matrix operations

Applying cross product

e Computing normal vector

* To triangle
* To plane

* Computing local 3D orthonormal
basis

* Point-normal form of plane
* ne(p-v0) = 0 means p is on the plane

Tiny Planet example

* Given p, cand g
e Computef,uandr

Fig. 2: Tiny-planet coordinate frame.

Tiny Planet example

* Given p, cand g
e Computef,uandr

* U = normalize(p-c) ey
* r = normalize((qg-c) x (u)) @ (o (©

° f =uXxr Fig. 2: Tiny-planet coordinate frame.

Sin rule for cross products

* Relates magnitude of cross product to T ¢ ﬂ — lullvl sin#
sin of angle and area of parallelegram

e [faxb=0then..?
axb

 If |]a]=|b|=1and |axb]| =1, then ...? b o l1axbl

* In general, the smaller |a x b|, the less
numerically stable the result

Homogeneous coordinates: vectors

 Step 1: Represent vectors as linear combinations of others: v = <a0,al>

—

U = ol + o,

e u0 and ul are basis vectors

h vo= 2uy + 3 .
3 S w = 3+ 26
. Ut = (2,3) : n
N wrp = (3,2}
\ g =19, 2
Ul U]
)

))

Homogeneous coordinates: points

 Step 2: Add origin to sum

» = ooy + aqup + O

* Now
* point =<x,y,1>
* vector =<x,y,0>

e

()

Do

lt

2‘1’||+

R |

= {!

3-(’] 1.0

|.(']+[j.()

(2.1.0)

Affine transformations

* Key: translation, rotation, scale

rotation translation uniform nonuniform reflection shearing
scaling scaling

First version: coordinate based equations

e Translation byv: qg=p + T(v) Add vector v
 Scale by a: g=ap Multiply by scalar a
e Rotate by t: (gx,qy) = <px*cos(t) — py*sin(t), px*sin(t) + py*cos(t)>

* Repeated scalings and translations:
eg=a(p+T(V))=a((ap+T(V))+T(v))=and soon ...

* Complex

Second version: Homogeneous coordinates

e Unify all transformations in matrix notation

(1 0 0 o)
0 1 0 0
0 0 1 0
0o 0o o0 1)

(1
0
0

0

0
1
0
0

0
0
1
0

tx\

Ly
tz

1)

fSX

0
0

L0

0 0
sy 0
0 sz
0 0

0\
0
0

1)

Identity Matrix glTranslatef(tx, ty,tz) glScalef(sx,sy,s2)

(1 o 0 0) [cos(d o sind) o) (cos(d) -sin(d) 0 0
0 cos(d) -sin(d) 0 0 1 0 0 sin(d) cos(d) 0O 0O
0 sin(d) cos(d) 0 -sin(d) (0 cos(d) 0 0 0 1 0
0o 0 o 1) Lo o o 1) L o 0 0 1)

glRotatef(d,1,0,0) glRotatef(d,0,1,0) glRotatef(d,0,0,1)

Chalkboard — review all transformations

Defining rotations

* Euler angles
* Angle Axis
* Quaternions

* In Unity
transform.Rotate(x, vy, z))

Roll — around forward direction
Pitch — around right direction
Yaw — around up direction

- Euler anglesin order z, x, y

Deflnlﬂg rOtatIOﬂS A Rotation axis
* Angle Axis

Quaternion.AngleAxis

public static Quaternion AngleAxis(float angle, Vector3 axis);

Description Rotation angle

Creates a rotation which rotates angle degrees around axis.

using UnityEngine;
g yEng >

public class Example : MonoBehaviour

{
void Start()
{
// Sets the transforms rotation to rotate 30 degrees around the y-axis
transform.rotation = Quaternion.AngleAxis(30, Vector3.up);
ks

Interpolating transtformations

* Translation. Easy — move v*dt each frame
* Scale. Easy — scale by s*dt each frame
* Interpolating rotations? Harder

* Interpolate Euler angles? Doesn’t work well
* Interpolate Axis Angle? Better
* Interpolate Quaternions? Best Why Unity uses them.

Quaternion.Slerp

public static Quaternion Slerp(Quaternion a, Quaternion b, float t);

Description

Spherically interpolates between a and b by t. The parameter t is clamped to the range [0, 1].

// Interpolates rotation between the rotations "from" and "to"
// (Choose from and to not to be the same as
// the object you attach this script to)

using UnityEngine;
using System.Collections;

public class ExampleClass : MonoBehaviour

{

public Transform from;
public Transform to;

private float timeCount = 0.0f;

void Update()

{
transform.rotation = Quaternion.Slerp(from.rotation, to.rotation, timeCount);
timeCount = timeCount + Time.deltaTime;

Activity 4b: Build a computer game

* At each table plan out a game for your team. Answer these questions
(quickly!)

* What platform(s)?

* Any special hardware or peripherals needed?

* What software elements needed?

 Build from scratch or use engine? Which language or engine?

* What assets will you need? How will you make or get them?

Given vectors u, v, and w, all of type Vector3, the following operators are supported:

u=1v + w; // vector addition

u=v - w; // vector subtraction

if (u == v || u '=w) { ... } // vector comparison
u=v * 2.0f; // scalar multiplication

v =w/ 2.0f; // scalar division

You can access the components of a Vector3 using as either using axis names, such as, u.x, u.y,
and u.z, or through indexing, such as u[0], u[l], and u[2].

The Vector3 class also has the following members and static functions.

float x v.magnitude; // length of v

Vector3 u = v.normalize; // unit vector in v’s direction

float a = Vector3.Angle (u, v); // angle (degrees) between u and v
float b Vector3.Dot (u, v); // dot product between u and v

Vector3 ul = Vector3.Project (u, v); // orthog proj of u onto v
Vector3 u2 = Vector3.ProjectOnPlane (u, v); // orthogonal complement

Some of the Vector3 functions apply when the objects are interpreted as points. Let p and ¢
be points declared to be of type Vector3. The function Vector3.Lerp is short for linear inter-
polation. It is essentially a two-point special case of a convex combination. (The combination
parameter is assumed to lie between 0 and 1.)

float b = Vector3.Distance (p, q); // distance between p and q
Vector3 midpoint = Vector3.Lerp(p, q, 0.5f); // convex combination

Readings

* David Mount's lectures on Geometry and Geometric Programming

