Geometry and Geometric Programming III

CMSC425.01 Spring 2019

Still at tables ...

Administrivia

- Instant Hw1 due
- Project 1a under grading
- Review Project 1b Thursday
- Full Hw1 coming soon

Today's question

Computing AND changing distances, directions and orientations

Back to orthogonal projection

Orthogonal projection: Given a vector \vec{u} and a nonzero vector \vec{v} , it is often convenient to decompose \vec{u} into the sum of two vectors $\vec{u} = \vec{u}_1 + \vec{u}_2$, such that \vec{u}_1 is parallel to \vec{v} and \vec{u}_2 is orthogonal to \vec{v} .

$$\vec{u}_1 \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{v} \cdot \vec{v})} \vec{v}, \qquad \vec{u}_2 \leftarrow \vec{u} - \vec{u}_1.$$

2D frame of reference

Big idea – frame of reference

Global or local coordinate system in which to define pts and vectors

- Start with obvious example
- u = <1,1>
- v = <1,0>

- Work slowly to complex
- u = <0,1>
- v = <1,1>

- Work slowly to complex
- u = <0,1>
- v = <1,1>
- u1 = (u•v)/(v•v) v = ½ <1,1> = < ½, ½ >
- $u^2 = u u^2 = \langle 0, 1 \rangle \langle \frac{1}{2}, \frac{1}{2} \rangle$ = $\langle -\frac{1}{2}, \frac{1}{2} \rangle$

 $\vec{u}_1 \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{v})} \vec{v}, \qquad \vec{u}_2 \leftarrow \vec{u} - \vec{u}_1$

Observation: are u1, u2 normal vectors?

- u1 = < ½, ½ >
- $u_2 = < -\frac{1}{2}, \frac{1}{2} >$

Observation: are u1, u2 normal vectors?

- u1 = < ½, ½ >
- $u_2 = < -\frac{1}{2}, \frac{1}{2} >$
- |u1| = sqrt(½ + ½) = sqrt(½)

NO

Chalkboard work – solving with perp vector

- Using perp vector to create orthonormal basis
- Not just orthogonal
- Ortho at right angles
- Normal each vector is unit length
- Orthonormal basis gives us local frame of reference

Octave Online – working through examples

- Good for doing examples, verifying equations
- Vectors, Matrices, operations
- Open source version of Matlab
- Can also use app
- Or link Octave fcns externally to C or other languages

•				⊜ o	ctave-online.ne	et Č		1 D
	Shopping 🗸	Research 🛩	Hobbies 🗸	News 🗸	Electronics ¥	Educational \sim	Apple 🗸	Import to Mendeley >>
			Octave	Online · Clo	oud IDE compatib	le with MATLAB		+
∞	Octa	ve On	ine					
	Vars							لم
# ans								<u> </u>
[1x2]								
[1x2] [1x2]								
172]								
		octave:2 c =	> c = [1	,2]				
		12						
		<pre>octave:3 p =</pre>	l> p = [€	,0]				
		00						
		octave:4 v =	> v=[1,1]				1
		1 1						
		octave: ans = 3	⊳ dot(v,	c-p)				
		»						

Instant Hw1 – Ray – circle intersection

 Does the ray defined by p and v intersect the circle defined by c and r?

Instant Hw1 – Ray – circle intersection

 Does the ray defined by p and v intersect the circle defined by c and r?

- Answers:
- A) Do equations p(t) = p + tv and $(x-xc)^2 + (y-yc)^2 = r^2$ have solution?
- B) Is sine of angle * length to circle less than radius?
- C) Length of projection of normal less than radius?

Instant Hw1 – Ray – circle intersection

р

- Does the ray defined by p and v intersect the circle defined by c and r?
- C) Length of projection of normal less than radius?
- 1) Compute v_perp
- 2) Normalize v_perp
- 3) Distance center to line: PC•v_perp
- 4) Is $PC \cdot v_perp < r$?

Moving to 3D – frame of reference

• Left handed system XYZ

Moving to 3D – frame of reference

- In Unity (right, up, forward)
- Forward moving forward
- Up a sense of gravity
- Right turn direction

Working in 3D – cross product

- Cross product of two vectors
- Right handed system! (Unity is LHS)

$$\vec{u} \times \vec{v} = \begin{pmatrix} u_y v_z - u_z v_y \\ u_z v_x - u_x v_z \\ u_x v_y - u_y v_x \end{pmatrix}.$$

Working in 3D – cross product

- Cross product of two vectors
- Right handed system! (Unity is LHS)

$$\vec{u} \times \vec{v} = \left(\begin{array}{c} u_y v_z - u_z v_y \\ u_z v_x - u_x v_z \\ u_x v_y - u_y v_x \end{array}\right).$$

- Cross product is
 - Skew symmetric. u x v = v x u
 - Non associative. (u x v)x w != ux (v x w)
 - Bilinear. au x (v + w) = a(u x v + u x w)

Computing cross product

• Matrix determinant approach

$$\vec{u} \times \vec{v} = \begin{pmatrix} u_y v_z - u_z v_y \\ u_z v_x - u_x v_z \\ u_x v_y - u_y v_x \end{pmatrix}$$

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix}.$$

- ex = <1,0,0>
- ey = <0,1,0>
- ez = <0,0,1>
- Will review matrix operations

Applying cross product

- Computing normal vector
 - To triangle
 - To plane
- Computing local 3D orthonormal basis

- Point-normal form of plane
 - n•(p-v0) = 0 means p is on the plane

Tiny Planet example

- Given p, c and q
- Compute f, u and r

Fig. 2: Tiny-planet coordinate frame.

Tiny Planet example

- Given p, c and q
- Compute f, u and r
- u = normalize(p-c)
- r = normalize((q-c) x (u))
- f = u x r

Fig. 2: Tiny-planet coordinate frame.

Sin rule for cross products

- Relates magnitude of cross product to sin of angle and area of parallelegram
- If a x b = 0 then ...?
- If |a| = |b| = 1 and $|a \times b| = 1$, then ...?
- In general, the smaller |a x b|, the less numerically stable the result

$$|\vec{u} \times \vec{v}| = |u||v|\sin\theta$$

$$a \times b$$

$$b = |a \times b|$$

$$a \times b|$$

$$a \times b|$$

Homogeneous coordinates: vectors

• Step 1: Represent vectors as linear combinations of others: v = <a0,a1>

$$\vec{v} = \alpha_0 \vec{u}_0 + \alpha_1 \vec{u}_1,$$

• u0 and u1 are basis vectors

Homogeneous coordinates: points

• Step 2: Add origin to sum

$$p = \alpha_0 \vec{u}_0 + \alpha_1 \vec{u}_1 + O$$

Affine transformations

• Key: translation, rotation, scale

First version: coordinate based equations

- Translation by v: q = p + T(v)
 Add vector v
- Scale by a: q = a p Multiply by scalar a
- Rotate by t: (qx,qy) = <px*cos(t) py*sin(t), px*sin(t) + py*cos(t)>

- Repeated scalings and translations:
- q = a (p + T(V)) = a ((a p +T(V)) + T(v)) = and so on ...
- Complex

Second version: Homogeneous coordinates

• Unify all transformations in matrix notation

	1	0	0	0			1	0	0	tx				sx	0	0	0		
	0	1	0	0			0	1	0	ty	,			0	sy	0	0		
	0	0	1	0			0	0	1	tz				0	0	sz	0		
	O	0	0	1	J	l	0	0	0	1	J			0	0	0	1	J	
Identity Matrix						glTranslatef(tx,ty,tz)							glScalef(sx,sy,sz)						
/					`	,					``		,					``	
1		0	0		0	CO:	s(d)	0	sir	1(d)	0		c	os(d)	-sir	1(d)	0	0	
0	С	os(d)	-sin(d)	0		0	1		0	0		si	n(d)	cos	(d)	0	0	
0	S	in(d)	cos(d)	0	-siı	n(d)	0	со	s(d)	0			0	()	1	0	
(O		0	0		1)		0	0		0	1)			0	()	0	1)	
glRotatef(d,1,0,0)						glRotatef(d,0,1,0)							glRotatef(d,0,0,1)						

Chalkboard – review all transformations

Defining rotations

- Euler angles
- Angle Axis
- Quaternions

Roll – around forward direction Pitch – around right direction Yaw – around up direction

• In Unity

transform.Rotate(x, y, z))

- Euler angles in order z, x, y

Defining rotations

• Angle Axis

Quaternion.AngleAxis

public static <u>Quaternion</u> **AngleAxis**(float **angle**, <u>Vector3</u> **axis**);

Description

Creates a rotation which rotates angle degrees around axis.

```
using UnityEngine;
public class Example : MonoBehaviour
{
    void Start()
    {
        // Sets the transforms rotation to rotate 30 degrees around the y-axis
        transform.rotation = Quaternion.AngleAxis(30, Vector3.up);
    }
}
```


Interpolating transformations

- Translation. Easy move v*dt each frame
- Scale. Easy scale by s*dt each frame
- Interpolating rotations? Harder
 - Interpolate Euler angles? Doesn't work well
 - Interpolate Axis Angle? Better
 - Interpolate Quaternions? Best

Why Unity uses them.

Quaternion.Slerp

public static <u>Quaternion</u> **Slerp**(<u>Quaternion</u> **a**, <u>Quaternion</u> **b**, float **t**);

Description

Spherically interpolates between a and b by t. The parameter t is clamped to the range [0, 1].

```
// Interpolates rotation between the rotations "from" and "to"
// (Choose from and to not to be the same as
// the object you attach this script to)
using UnityEngine;
using System.Collections;
public class ExampleClass : MonoBehaviour
{
    public Transform from;
    public <u>Transform</u> to;
    private float timeCount = 0.0f;
    void <u>Update()</u>
    {
        transform.rotation = <u>Quaternion.Slerp(from.rotation, to.rotation, timeCount);</u>
        timeCount = timeCount + <u>Time.deltaTime;</u>
    3
}
```

Activity 4b: Build a computer game

- At each table plan out a game for your team. Answer these questions (quickly!)
- What platform(s)?
- Any special hardware or peripherals needed?
- What software elements needed?
- Build from scratch or use engine? Which language or engine?
- What assets will you need? How will you make or get them?

Given vectors u, v, and w, all of type Vector3, the following operators are supported:

```
u = v + w; // vector addition
u = v - w; // vector subtraction
if (u == v || u != w) { ... } // vector comparison
u = v * 2.0f; // scalar multiplication
v = w / 2.0f; // scalar division
```

You can access the components of a Vector3 using as either using axis names, such as, u.x, u.y, and u.z, or through indexing, such as u[0], u[1], and u[2].

The Vector3 class also has the following members and static functions.

```
float x = v.magnitude; // length of v
Vector3 u = v.normalize; // unit vector in v's direction
float a = Vector3.Angle (u, v); // angle (degrees) between u and v
float b = Vector3.Dot (u, v); // dot product between u and v
Vector3 u1 = Vector3.Project (u, v); // orthog proj of u onto v
Vector3 u2 = Vector3.ProjectOnPlane (u, v); // orthogonal complement
```

Some of the Vector3 functions apply when the objects are interpreted as points. Let p and q be points declared to be of type Vector3. The function Vector3.Lerp is short for *linear interpolation*. It is essentially a two-point special case of a convex combination. (The combination parameter is assumed to lie between 0 and 1.)

```
float b = Vector3.Distance (p, q); // distance between p and q
Vector3 midpoint = Vector3.Lerp(p, q, 0.5f); // convex combination
```

Readings

• David Mount's lectures on Geometry and Geometric Programming