Still at tables ...
Administrivia

• Instant Hw1 due

• Project 1a under grading

• Review Project 1b Thursday

• Full Hw1 coming soon
Today’s question

Computing AND changing distances, directions and orientations
Back to orthogonal projection

Orthogonal projection: Given a vector \(\vec{u} \) and a nonzero vector \(\vec{v} \), it is often convenient to decompose \(\vec{u} \) into the sum of two vectors \(\vec{u} = \vec{u}_1 + \vec{u}_2 \), such that \(\vec{u}_1 \) is parallel to \(\vec{v} \) and \(\vec{u}_2 \) is orthogonal to \(\vec{v} \).

\[
\vec{u}_1 \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{v} \cdot \vec{v})} \vec{v}, \quad \vec{u}_2 \leftarrow \vec{u} - \vec{u}_1.
\]

2D frame of reference
Big idea – frame of reference

Global or local coordinate system in which to define pts and vectors

• 2D

• 3D
Understand: work through examples

• Start with obvious example
• \(u = \langle 1, 1 \rangle \)
• \(v = \langle 1, 0 \rangle \)

\[
\vec{u}_1 \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{u})} \vec{v}, \quad \vec{u}_2 \leftarrow \vec{u} - \vec{u}_1
\]
Understand: work through examples

- Start with obvious example
- \(u = \langle 1, 1 \rangle \)
- \(v = \langle 1, 0 \rangle \)

- \(u_1 = 1/1 \times \langle 1, 0 \rangle \)
- \(u_2 = \langle 1, 1 \rangle - \langle 1, 0 \rangle = \langle 0, 1 \rangle \)

\(u \) projects onto \(\langle 1, 0 \rangle, \langle 0, 1 \rangle \)

\[\begin{align*}
\vec{u}_1 & \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{v})} \vec{v}, \\
\vec{u}_2 & \leftarrow \vec{u} - \vec{u}_1
\end{align*} \]
Understand: work through examples

• Work slowly to complex
• \(u = <0,1> \)
• \(v = <1,1> \)

\[
\vec{u}_1 \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{v})} \vec{v}, \quad \vec{u}_2 \leftarrow \vec{u} - \vec{u}_1
\]
Understand: work through examples

• Work slowly to complex
• $u = <0,1>$
• $v = <1,1>$

• $u_1 = (u \cdot v)/(v \cdot v) \cdot v$
 $= \frac{1}{2} <1,1> = < \frac{1}{2}, \frac{1}{2} >$

• $u_2 = u - u_1 = <0,1> - < \frac{1}{2}, \frac{1}{2} >$
 $= <- \frac{1}{2}, \frac{1}{2} >$

$\vec{u}_1 \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{v})} \cdot \vec{v}, \quad \vec{u}_2 \leftarrow \vec{u} - \vec{u}_1$
Observation: are u_1, u_2 normal vectors?

- $u_1 = \langle \frac{1}{2}, \frac{1}{2} \rangle$
- $u_2 = \langle -\frac{1}{2}, \frac{1}{2} \rangle$

$$
\vec{u}_1 \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{v})} \vec{v}, \quad \vec{u}_2 \leftarrow \vec{u} - \vec{u}_1
$$
Observation: are u1, u2 normal vectors?

- $u_1 = \left< \frac{1}{2}, \frac{1}{2} \right>$
- $u_2 = \left< -\frac{1}{2}, \frac{1}{2} \right>$
- $|u_1| = \sqrt{\frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{1}{2}}$

 $u_1 = \frac{\left< \frac{1}{2}, \frac{1}{2} \right>}{\sqrt{1/2}} = \left< \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right>$

$\vec{u}_1 \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{v})} \vec{v}, \quad \vec{u}_2 \leftarrow \vec{u} - \vec{u}_1$

$v = \left< 1, 1 \right>$
$u = \left< 0, 1 \right>$

NO
Chalkboard work – solving with perp vector

- Using perp vector to create orthonormal basis
- Not just orthogonal

- Ortho – at right angles
- Normal – each vector is unit length

- Orthonormal basis gives us local frame of reference
Octave Online – working through examples

• Good for doing examples, verifying equations
• Vectors, Matrices, operations
• Open source version of Matlab
• Can also use app
• Or link Octave fcns externally to C or other languages
Instant Hw1 – Ray – circle intersection

• Does the ray defined by p and v intersect the circle defined by c and r?
Instant Hw1 – Ray – circle intersection

• Does the ray defined by \mathbf{p} and \mathbf{v} intersect the circle defined by \mathbf{c} and r?

• Answers:
 A) Do equations $p(t) = p + tv$ and $(x-\mathbf{c})^2 + (y-\mathbf{c})^2 = r^2$ have solution?
 B) Is sine of angle * length to circle less than radius?
 C) Length of projection of normal less than radius?
Instant Hw1 – Ray – circle intersection

• Does the ray defined by \(p \) and \(v \) intersect the circle defined by \(c \) and \(r \)?

C) Length of projection of normal less than radius?
 1) Compute \(v_{\text{perp}} \)
 2) Normalize \(v_{\text{perp}} \)
 3) Distance center to line: \(PC \cdot v_{\text{perp}} \)
 4) Is \(PC \cdot v_{\text{perp}} < r \) ?
Moving to 3D – frame of reference

- Left handed system XYZ
Moving to 3D – frame of reference

• In Unity – (right, up, forward)
• Forward – moving forward
• Up – a sense of gravity
• Right – turn direction
Working in 3D – cross product

- Cross product of two vectors
- Right handed system! (Unity is LHS)
Working in 3D – cross product

• Cross product of two vectors
• Right handed system! (Unity is LHS)

\[
\vec{u} \times \vec{v} = \begin{pmatrix}
 u_yv_z - u_zv_y \\
 u_zv_x - u_xv_z \\
 u_xv_y - u_yv_x
\end{pmatrix}.
\]

• Cross product is
 • Skew symmetric. \(u \times v = -v \times u \)
 • Non associative. \((u \times v) \times w \neq u \times (v \times w) \)
 • Bilinear. \(au \times (v + w) = a(u \times v + u \times w) \)
Computing cross product

- Matrix determinant approach

\[\vec{u} \times \vec{v} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix} \]

- \(\vec{e}_x = \langle 1, 0, 0 \rangle \)
- \(\vec{e}_y = \langle 0, 1, 0 \rangle \)
- \(\vec{e}_z = \langle 0, 0, 1 \rangle \)

- Will review matrix operations
Applying cross product

• Computing normal vector
 • To triangle
 • To plane

• Computing local 3D orthonormal basis

• Point-normal form of plane
 • \(\mathbf{n} \cdot (\mathbf{p} - \mathbf{v}_0) = 0 \) means \(\mathbf{p} \) is on the plane
Tiny Planet example

• Given p, c and q
• Compute f, u and r

Fig. 2: Tiny-planet coordinate frame.
Tiny Planet example

- Given p, c and q
- Compute f, u and r

 - u = normalize(p-c)
 - r = normalize((q-c) x (u))
 - f = u x r

Fig. 2: Tiny-planet coordinate frame.
Sin rule for cross products

• Relates magnitude of cross product to sin of angle and area of parallelogram

\[|\vec{u} \times \vec{v}| = |u||v|\sin \theta. \]

• If \(a \times b = 0 \) then ...?

• If \(|a| = |b| = 1 \) and \(|a \times b| = 1 \), then ...?

• In general, the smaller \(|a \times b| \), the less numerically stable the result
Homogeneous coordinates: vectors

- Step 1: Represent vectors as linear combinations of others: \(\vec{v} = <a_0, a_1> \)

\[
\vec{v} = \alpha_0 \vec{u}_0 + \alpha_1 \vec{u}_1,
\]

- \(u_0 \) and \(u_1 \) are basis vectors
Homogeneous coordinates: points

• Step 2: Add origin to sum

\[p = \alpha_0 \vec{u}_0 + \alpha_1 \vec{u}_1 + O \]

• Now
 • point = \(<x, y, 1>\)
 • vector = \(<x, y, 0>\)
Affine transformations

- Key: translation, rotation, scale
First version: coordinate based equations

• Translation by v: $q = p + T(v)$
 Add vector v

• Scale by a: $q = a \ p$
 Multiply by scalar a

• Rotate by t: $(qx,qy) = \langle px \cos(t) - py \sin(t), \ px \sin(t) + \ py \cos(t) \rangle$

• Repeated scalings and translations:

 $q = a \ (p + T(V)) = a \ ((a \ p + T(V)) + T(v)) = \text{and so on ...}$

• Complex
Second version: Homogeneous coordinates

• Unify all transformations in matrix notation

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\quad \begin{pmatrix}
1 & 0 & 0 & \text{tx} \\
0 & 1 & 0 & \text{ty} \\
0 & 0 & 1 & \text{tz} \\
0 & 0 & 0 & 1
\end{pmatrix}
\quad \begin{pmatrix}
\text{sx} & 0 & 0 & 0 \\
0 & \text{sy} & 0 & 0 \\
0 & 0 & \text{sz} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

\begin{align*}
\text{Identity Matrix} & & \text{glTranslate(tx,ty,tz)} & & \text{glScale(sx,ty,sz)} \\
\text{glRotate(d,1,0,0)} & & \text{glRotate(d,0,1,0)} & & \text{glRotate(d,0,0,1)}
\end{align*}
Chalkboard – review all transformations
Defining rotations

• Euler angles
 Roll – around forward direction

• Angle Axis
 Pitch – around right direction

• Quaternions
 Yaw – around up direction

• In Unity
 transform.Rotate(x, y, z))
 - Euler angles in order z, x, y
Defining rotations

• Angle Axis

Quaternion.AngleAxis

```csharp
public static Quaternion AngleAxis(float angle, Vector3 axis);
```

Description

Creates a rotation which rotates angle degrees around axis.

```csharp
using UnityEngine;

public class Example : MonoBehaviour
{
    void Start()
    {
        // Sets the transforms rotation to rotate 30 degrees around the y-axis
        transform.rotation = Quaternion.AngleAxis(30, Vector3.up);
    }
}
```
Interpolating transformations

• Translation. Easy – move v^*dt each frame

• Scale. Easy – scale by s^*dt each frame

• Interpolating rotations? Harder

 • Interpolate Euler angles? Doesn’t work well
 • Interpolate Axis Angle? Better
 • Interpolate Quaternions? Best Why Unity uses them.
Quaternion.Slerp

```csharp
public static Quaternion Slerp(Quaternion a, Quaternion b, float t);
```

Description

Spherically interpolates between a and b by t. The parameter t is clamped to the range [0, 1].

```csharp
// Interpolates rotation between the rotations "from" and "to"
// (Choose from and to not to be the same as
// the object you attach this script to)

using UnityEngine;
using System.Collections;

public class ExampleClass : MonoBehaviour
{
    public Transform from;
    public Transform to;

    private float timeCount = 0.0f;

    void Update()
    {
        transform.rotation = Quaternion.Slerp(from.rotation, to.rotation, timeCount);
        timeCount = timeCount + Time.deltaTime;
    }
}
```
Activity 4b: Build a computer game

• At each table plan out a game for your team. Answer these questions (quickly!)

• What platform(s)?
• Any special hardware or peripherals needed?
• What software elements needed?
• Build from scratch or use engine? Which language or engine?
• What assets will you need? How will you make or get them?
Given vectors \(u, v, \) and \(w, \) all of type \(\text{Vector3}, \) the following operators are supported:

\[
\begin{align*}
 u &= v + w; & \text{// vector addition} \\
 u &= v - w; & \text{// vector subtraction} \\
 \text{if} \ (u == v || u != w) \ { \ldots } & \text{// vector comparison} \\
 u &= v \times 2.0f; & \text{// scalar multiplication} \\
 v &= w / 2.0f; & \text{// scalar division}
\end{align*}
\]

You can access the components of a \(\text{Vector3} \) using as either using axis names, such as, \(u.x, u.y, \) and \(u.z, \) or through indexing, such as \(u[0], u[1], \) and \(u[2]. \)

The \(\text{Vector3} \) class also has the following members and static functions.

\[
\begin{align*}
 \text{float} \ x &= v.\text{magnitude}; & \text{// length of } v \\
 \text{Vector3} \ u &= v.\text{normalize}; & \text{// unit vector in } v'\text{’s direction} \\
 \text{float} \ a &= \text{Vector3.\text{Angle}} \ (u, v); & \text{// angle (degrees) between } u \text{ and } v \\
 \text{float} \ b &= \text{Vector3.\text{Dot}} \ (u, v); & \text{// dot product between } u \text{ and } v \\
 \text{Vector3} \ u1 &= \text{Vector3.\text{Project}} \ (u, v); & \text{// orthog proj of } u \text{ onto } v \\
 \text{Vector3} \ u2 &= \text{Vector3.\text{Project0nPlane}} \ (u, v); & \text{// orthogonal complement}
\end{align*}
\]

Some of the \(\text{Vector3} \) functions apply when the objects are interpreted as points. Let \(p \) and \(q \) be points declared to be of type \(\text{Vector3}. \) The function \(\text{Vector3.\text{Lerp}} \) is short for \(\text{linear interpolation}. \) It is essentially a two-point special case of a convex combination. (The combination parameter is assumed to lie between 0 and 1.)

\[
\begin{align*}
 \text{float} \ b &= \text{Vector3.\text{Distance}} \ (p, q); & \text{// distance between } p \text{ and } q \\
 \text{Vector3} \ \text{midpoint} &= \text{Vector3.\text{Lerp}}(p, q, 0.5f); & \text{// convex combination}
\end{align*}
\]
Readings

• David Mount's lectures on Geometry and Geometric Programming