Geometry and Geometric Programming III

CMSC425.01 Spring 2019

Still at tables ...

Administrivia

- Project 1a grades released tonight
- Final project introduction this week
- Hw1 posted to web site, due next Sunday

Final project proposals

Include

- Team members
- Game title
- General description
- Platform and resources
- Coordination

Final project proposals

Include

- Team members
- Game title
- General description
- Platform and resources
- Coordination

Advice

- Teams of 2-3 best, > 4 ask
- Demoable at end of semester
- Do one thing well
- Involve entire team
- Design in layers
- K.I.S.S. (look it up ...)

Today's question

How do we move and orient shapes?

Examples

- Rotate moon around Earth around sun (multiple motions)
- Orient cylinder sections of 3D helix

Start with frame of references

Global or local coordinate system in which to define pts and vectors

- 2D
-3D

Affine transformations

- Key: translation, rotation, scale

rotation

translation

uniform scaling

nonumiform scaling

reflection
shearing

Scaling

- Coordinate free - uniform scale s

$$
v=s u
$$

- Coordinate based
$<v_{x}, v_{y}, v_{z}>=<s u_{x}, s u_{y}, s u_{z}>$

- Scaling sizes and moves

Scaling

- Coordinate free - uniform scale s

$$
v=s u
$$

- Coordinate based
$<v_{x}, v_{y}, v_{z}>=<s u_{x}, s u_{y}, s u_{z}>$

- Scaling sizes and moves
- Homogeneous coordinates - vector

$$
<v_{x}, v_{y}, v_{z}, 0>=<s u_{x}, s u_{y}, s u_{z}, 0>
$$

- Homogeneous coordinates - points (simple scalar * doesn't work)

$$
\left(v_{x}, v_{y}, v_{z}, 1\right)=\left(s u_{x}, s u_{y}, s u_{z}, s\right)
$$

Scaling

- Matrix form 2D

$$
v^{t}=M_{s} u^{t}
$$

$$
M_{s}=\left[\begin{array}{lll}
s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Matrix multiplication on the right with transpose of vector v^{t}
- Works for vectors and points
- Maintains homogeneous
$<v_{x}, v_{y}, 0>=<s u_{x}, s u_{y}, 1 * 0>$ coordinate w
- Point

$$
\left(q_{x}, q_{y}, 1\right)=<s p_{x}, s p_{y}, 1 * 1>
$$

Scaling - non-uniform

- Matrix form 2D

$$
\begin{gathered}
v=M_{s} u \\
M_{s}=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Translation

- Matrix form 2D

$$
v=M_{t} u
$$

$$
M_{t}=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

- Translate point

$$
\begin{gathered}
\left(q_{x}, q_{y}, 1\right)=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right] \\
\left(q_{x}, q_{y}, 1\right)=\left(p_{x}+t_{x}, p_{y}+t_{y}, 1\right)
\end{gathered}
$$

First version: coordinate based equations

- Translation by v:

- Scale by a:
- Repeated scalings and translations:
- $q=a(p+T(V))=a((a p+T(V))+T(v))=$ and so on ...
- Complex

Second version: Homogeneous coordinates

- Unify all transformations in matrix notation

$$
\begin{aligned}
& \begin{array}{cc}
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) & \left(\begin{array}{llll}
1 & 0 & 0 & t x \\
0 & 1 & 0 & t y \\
0 & 0 & 1 & \mathrm{tz} \\
0 & 0 & 0 & 1
\end{array}\right)
\end{array}\left(\begin{array}{llll}
\mathrm{sx} & 0 & 0 & 0 \\
0 & \mathrm{sy} & 0 & 0 \\
0 & 0 & \mathrm{sz} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \begin{array}{l}
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos (d) & -\sin (\mathrm{d}) & 0 \\
0 & \sin (\mathrm{~d}) & \cos (\mathrm{d}) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{array}\left(\begin{array}{cccc}
\cos (\mathrm{d}) & 0 & \sin (\mathrm{~d}) & 0 \\
0 & 1 & 0 & 0 \\
-\sin (\mathrm{d}) & 0 & \cos (\mathrm{~d}) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
\left(\begin{array}{ccc}
\cos (\mathrm{d}) & -\sin (\mathrm{d}) & 0
\end{array}\right. & 0 \\
\sin (\mathrm{~d}) & \cos (\mathrm{d}) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Chalkboard - review all transformations

Defining rotations

- Euler angles
- Angle Axis
- Quaternions

Roll - around forward direction
Pitch - around right direction
Yaw - around up direction

- In Unity
transform.Rotate ($\mathrm{x}, \mathrm{y}, \mathrm{z}$))
- Euler angles in order $\mathrm{z}, \mathrm{x}, \mathrm{y}$

Pitch

Roll

Yaw

Defining rotations

- Angle Axis

Quaternion.AngleAxis

public static Quaternion $\mathbf{A n g l e A x i s (f l o a t ~ a n g l e , ~ V e c t o r 3 ~} \mathbf{a x i s}$);

Description


```
using UnityEngine;
public class Example : MonoBehaviour
{
    void Start()
    {
                // Sets the transforms rotation to rotate 30 degrees around the y-axis
        transform.rotation = Quaternion.AngleAxis(30, Vector3.up);
        }
}
```


Interpolating transformations

- Translation.
- Scale.

Easy - move v*dt each frame
Easy - scale by s*dt each frame

- Interpolating rotations? Harder
- Interpolate Euler angles? Doesn't work well
- Interpolate Axis Angle? Better
- Interpolate Quaternions? Best

Why Unity uses them.

Quaternion.Slerp

public static Quaternion Slerp(Quaternion a, Quaternion b, float t);

Description

Spherically interpolates between a and b by t . The parameter t is clamped to the range $[0,1]$.

```
// Interpolates rotation between the rotations "from" and "to"
// (Choose from and to not to be the same as
// the object you attach this script to)
using UnityEngine;
using System.Collections;
public class ExampleClass : MonoBehaviour
{
    public Transform from;
    public Transform to;
    private float timeCount = 0.0f;
    void Update()
    {
        transform.rotation = Quaternion.Slerp(from.rotation, to.rotation, timeCount);
        timeCount = timeCount + Time.deltaTime;
    }
}
```


Activity 4b: Build a computer game

- At each table plan out a game for your team. Answer these questions (quickly!)
- What platform(s)?
- Any special hardware or peripherals needed?
- What software elements needed?
- Build from scratch or use engine? Which language or engine?
- What assets will you need? How will you make or get them?

Given vectors u, v, and w, all of type Vector3, the following operators are supported:

```
u = v + w; // vector addition
u = v - w; // vector subtraction
if (u == v || u != w) { ... } // vector comparison
u = v * 2.0f; // scalar multiplication
v = w / 2.0f; // scalar division
```

You can access the components of a Vector3 using as either using axis names, such as, u.x, u.y, and $u . z$, or through indexing, such as $u[0], u[1]$, and $u[2]$.
The Vector3 class also has the following members and static functions.

```
float x = v.magnitude; // length of v
Vector3 u = v.normalize; // unit vector in v's direction
float a = Vector3.Angle (u, v); // angle (degrees) between u and v
float b = Vector3.Dot (u, v); // dot product between u and v
Vector3 u1 = Vector3.Project (u, v); // orthog proj of u onto v
Vector3 u2 = Vector3.ProjectOnPlane (u, v); // orthogonal complement
```

Some of the Vector3 functions apply when the objects are interpreted as points. Let p and q be points declared to be of type Vector3. The function Vector3.Lerp is short for linear interpolation. It is essentially a two-point special case of a convex combination. (The combination parameter is assumed to lie between 0 and 1.)

```
float b = Vector3.Distance (p, q); // distance between p and q
Vector3 midpoint = Vector3.Lerp(p, q, 0.5f); // convex combination
```


Readings

- David Mount's lectures on Geometry and Geometric Programming

