Geometry and Geometric Programming III

CMSC425.01 Spring 2019

Still at tables ...

Administrivia

- Project 1a grades released tonight
- Final project introduction this week
- Hw1 posted to web site, due next Sunday

Final project proposals

Include

- Team members
- Game title
- General description
- Platform and resources
- Coordination

Final project proposals

Include

- Team members
- Game title
- General description
- Platform and resources
- Coordination

Advice

- Teams of 2-3 best, > 4 ask
- Demoable at end of semester
- Do one thing well
- Involve entire team
- Design in layers
- K.I.S.S. (look it up ...)

Today's question

How do we move and orient shapes?

Examples

• Rotate moon around Earth around sun (multiple motions)

 Orient cylinder sections of 3D helix

Start with frame of references

Global or local coordinate system in which to define pts and vectors

Affine transformations

• Key: translation, rotation, scale

Scaling

• Coordinate free - uniform scale s

v = su

Coordinate based

 $< v_x, v_y, v_z > = < su_x, su_y, su_z >$

• Scaling sizes and moves

Scaling

• Coordinate free – uniform scale s

v = su

• Coordinate based $< v_x, v_y, v_z > = < su_x, su_y, su_z >$

- Scaling sizes and moves
- Homogeneous coordinates vector
 $< v_x$, v_y , v_z , $0> = < su_x$, su_y , su_z , 0>
- Homogeneous coordinates points (simple scalar * doesn't work) $(v_x, v_y, v_z, 1) = (su_x, su_y, su_z, s)$

Scaling

• Matrix form 2D $v^t = M_s u^t$

$$M_s = \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Vector

 $< v_x, v_y, 0 > = < su_x, su_y, 1 * 0 >$ coordinate w

• Point

$$(q_x, q_y, 1) = < sp_x, sp_y, 1 * 1 >$$

- Matrix multiplication on the right with transpose of vector v^t
- Works for vectors and points
- Maintains homogeneous
 coordinate w

Scaling – non-uniform

• Matrix form 2D

 \bullet

 $v = M_{s}u$ $M_{s} = \begin{bmatrix} s_{x} & 0 & 0\\ 0 & s_{y} & 0\\ 0 & 0 & 1 \end{bmatrix}$

Translation

 ${\color{black}\bullet}$

- Matrix form 2D
 Translate point
 - $v = M_t u \qquad (q_x, q_y, 1) = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$ $M_t = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \qquad (q_x, q_y, 1) = (p_x + t_x, p_y + t_y, 1)$

First version: coordinate based equations

- Translation by v: q = p + T(v)
 Add vector v
- Scale by a: q = a p Multiply by scalar a
- Rotate by t: (qx,qy) = <px*cos(t) py*sin(t), px*sin(t) + py*cos(t)>

- Repeated scalings and translations:
- q = a (p + T(V)) = a ((a p +T(V)) + T(v)) = and so on ...
- Complex

Second version: Homogeneous coordinates

• Unify all transformations in matrix notation

1			`	、		1				,	<hr/>			/				>
	1 0	0	0				1	0	0	tx				sx	0	0	0)
	0 1	0	0				0	1	0	ty				0	sy	0	0	
	0 0	1	0				0	0	1	tz				0	0	sz	0	
l	0 0	0	1	J		l	0	0	0	1	J			0	0	0	1	J
Identity Matrix						glTranslatef(tx,ty,tz)							glScalef(sx,sy,sz)					
1	0	0		0)	(cos	s(d)	0	sin	(d)	0)		(co	os(d)	-sir	n(d)	0	0
0	cos(d)	-sin(d)	0		(0	1	()	0		si	n(d)	cos	s(d)	0	0
0	sin(d)	cos(d)	0		-sir	n(d)	0	cos	s(d)	0			0	(0	1	0
0	0	0		1)			0	0	()	1)			0	(0	0	1
a	lRotate		glRotatef(d,0,1,0)							glRotatef(d,0,0,1)								

Chalkboard – review all transformations

Defining rotations

- Euler angles
- Angle Axis
- Quaternions

Roll – around forward direction Pitch – around right direction Yaw – around up direction

• In Unity

transform.Rotate(x, y, z))

- Euler angles in order z, x, y

Defining rotations

• Angle Axis

Quaternion.AngleAxis

public static <u>Quaternion</u> **AngleAxis**(float **angle**, <u>Vector3</u> **axis**);

Description

Creates a rotation which rotates angle degrees around axis.

```
using UnityEngine;
public class Example : MonoBehaviour
{
    void Start()
    {
        // Sets the transforms rotation to rotate 30 degrees around the y-axis
        transform.rotation = Quaternion.AngleAxis(30, Vector3.up);
    }
}
```


Interpolating transformations

- Translation. Easy move v*dt each frame
- Scale. Easy scale by s*dt each frame
- Interpolating rotations? Harder
 - Interpolate Euler angles? Doesn't work well
 - Interpolate Axis Angle? Better
 - Interpolate Quaternions? Best

Why Unity uses them.

Quaternion.Slerp

public static <u>Quaternion</u> **Slerp**(<u>Quaternion</u> **a**, <u>Quaternion</u> **b**, float **t**);

Description

Spherically interpolates between a and b by t. The parameter t is clamped to the range [0, 1].

```
// Interpolates rotation between the rotations "from" and "to"
// (Choose from and to not to be the same as
// the object you attach this script to)
using UnityEngine;
using System.Collections;
public class ExampleClass : MonoBehaviour
{
    public Transform from;
    public <u>Transform</u> to;
    private float timeCount = 0.0f;
    void <u>Update()</u>
    {
        transform.rotation = <u>Quaternion.Slerp(from.rotation, to.rotation, timeCount);</u>
        timeCount = timeCount + <u>Time.deltaTime;</u>
    3
}
```

Activity 4b: Build a computer game

- At each table plan out a game for your team. Answer these questions (quickly!)
- What platform(s)?
- Any special hardware or peripherals needed?
- What software elements needed?
- Build from scratch or use engine? Which language or engine?
- What assets will you need? How will you make or get them?

Given vectors u, v, and w, all of type Vector3, the following operators are supported:

```
u = v + w; // vector addition
u = v - w; // vector subtraction
if (u == v || u != w) { ... } // vector comparison
u = v * 2.0f; // scalar multiplication
v = w / 2.0f; // scalar division
```

You can access the components of a Vector3 using as either using axis names, such as, u.x, u.y, and u.z, or through indexing, such as u[0], u[1], and u[2].

The Vector3 class also has the following members and static functions.

```
float x = v.magnitude; // length of v
Vector3 u = v.normalize; // unit vector in v's direction
float a = Vector3.Angle (u, v); // angle (degrees) between u and v
float b = Vector3.Dot (u, v); // dot product between u and v
Vector3 u1 = Vector3.Project (u, v); // orthog proj of u onto v
Vector3 u2 = Vector3.ProjectOnPlane (u, v); // orthogonal complement
```

Some of the Vector3 functions apply when the objects are interpreted as points. Let p and q be points declared to be of type Vector3. The function Vector3.Lerp is short for *linear interpolation*. It is essentially a two-point special case of a convex combination. (The combination parameter is assumed to lie between 0 and 1.)

```
float b = Vector3.Distance (p, q); // distance between p and q
Vector3 midpoint = Vector3.Lerp(p, q, 0.5f); // convex combination
```

Readings

• David Mount's lectures on Geometry and Geometric Programming