Colliders and Collisions

CMSC425.01 Spring 2019

Still at tables ...

Administrivia

-Hw1 due. Questions?

- Final project proposal. Questions?
- Project 1b submission issues
- Mini-lectures coming - videos on single topics (Panopto on Elms)

Student vs. professional answers

- For classes, just do enough for the grade
- For professional use, need to do more
- Demonstrate answer to rest of team
- Verify (test) solution by hand and by computer
- Make sure it is most efficient (or at least efficient enough)
- This class: get closer to professional answers
- Intellectual property issues
- Students can't plagiarize but can use assets under fair use (unpublished work)
- Professionals can plagiarize but can't violate copyright or patent

Today's questions

1) Applying geometry to game problems 2) How to detect object collisions

Problem 1: Shot gun weapon

- Problem:
- Given weapon defined by
- Location p
- Target point t
- Spread angle θ
- And object defined by

- Location q
- Return true if q hit

Problem 1: Shot gun weapon

- Problem:
- Given weapon defined by
- Location p
- Target point t
- Spread angle θ
- And object defined by

- Location q
- Return true if q hit

Problem 1: Shot gun weapon

- Problem:
- Given weapon defined by
- Location p
- Target point t
- Spread angle θ

- And object defined by
- Location q

$$
\begin{aligned}
\vec{v} & \leftarrow t-p ; \quad \vec{u} \leftarrow q-p \\
\ell(v) & \leftarrow\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}} ; \quad \ell(u) \leftarrow\|\vec{u}\|=\sqrt{\vec{u} \cdot \vec{u}} \\
\widehat{v} & \leftarrow \operatorname{normalize}(\vec{v})=\vec{v} / \ell(v) ; \quad \widehat{u} \leftarrow \operatorname{normalize}(\vec{u})=\vec{u} / \ell(u) \\
c_{1} & \leftarrow \widehat{u} \cdot \widehat{v} \\
c_{2} & \leftarrow \cos \left(\theta \cdot \frac{\pi}{180}\right) \\
\text { return } & \\
& \text { true iff }\left(c_{1} \geq c_{2} \text { and } \ell(u) \leq r\right) .
\end{aligned}
$$

- Return true if hit

Problem 2: Projectile aiming tool

- Problem:
- Given projectile with
- Initial location (0,h,0)
- Initial velocity $\vec{v}_{0}=<v_{0, x}, v_{0, y}, v_{0, z}>$
- Find landing location
- Location (x,0,z)

(a)

(b)

Problem 2: Projectile aiming tool

- Problem:

$$
z(t)=v_{0, z} t \quad \text { and } \quad y(t)=h+v_{0, y} t-\frac{1}{2} g t^{2} .
$$

- Given projectile with
- Initial location ($0, \mathrm{~h}, \mathrm{0}$)
- Initial velocity $\vec{v}_{0}=<v$

Time of Impact: Letting $a=g / 2, b=-v_{0, y}$, and $c=-h$, we seek the value of t such that $a t^{2}+b t+c=0$. (We have intentionally negated the coefficients so that $a>0$.) By the quadratic formula we have

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{v_{0, y} \pm \sqrt{v_{0, y}^{2}+2 g h}}{g}
$$

- Find landing location
- Location ($\mathrm{x}, 0, \mathrm{z}$)

(a)

(b)

Problem 3: Shooting an(d) arrow

- Problem:
- If projectile show direction (eg, arrow)
- Initial location (0,h,0)
- Initial velocity $\vec{v}_{0}=<v_{0, x}, v_{0, y}, v_{0, z}>$
- Find direction orientation
- Location (x,0,z)

(a)

(b)

Problem 3: Shooting an(d) arrow

- Problem:
- If projectile show direction (eg, arrow)
- Initial location (0,h,0)
- Initial velocity $\vec{v}_{0}=<v_{0, x}, v_{0, y}, v_{0, z}>$
- Find direction orientation
- Location (x,0,z)

(a)

(b)

```
RigidBody rb = getComponent<RigidBody> ();
transform.rotation = Quaternion.LookRotation (rb.velocity);
```


Problem 4: Evasive action

- Problem:
- Given ship defined by
- Location p
- Forward vector v
- Up vector u (perpendicular to v ?)
- And object defined by
- Location q

(a)

- Determine if ship should evade
- Turning up or down
- Turning left or right

Problem 4: Evasive action

- Problem:
- Given ship defined by
- Location p
- Forward vector v
- Up vector u (perpendicular to v ?)
- And object defined by
- Location q

(a)

(a)
- Determine if ship should evade
- Turning up or down
- Turning left or right

Problem 4: Evasive action

- Problem:
- Given ship defined by
- Location p
- Forward vector v
- Up vector u (perpendicular to v ?)
- And object defined by
- Location q

(a)

$$
\begin{aligned}
& \widehat{w} \cdot \vec{u} \geq 0 \Rightarrow \text { (obstacle above) pitch downwards } \\
& \widehat{w} \cdot \vec{u}<0 \Rightarrow \text { (obstacle below) pitch upwards. } \\
& \vec{r} \leftarrow \vec{v} \times \vec{u} \\
& \widehat{w} \cdot \vec{r} \geq 0 \Rightarrow \text { (obstacle to the right) yaw to the left } \\
& \widehat{w} \cdot \vec{r}<0 \Rightarrow \text { (obstacle to the left) yaw to the right. }
\end{aligned}
$$

Colliders and Collisions

- How to accurately and efficiently find collisions between game objects?
- Accurately - account for details of object shape
- Efficiently - considering both time and space

Collider shapes

- Finding good approximation
- Accurate enough
- Fast
- If inaccurate
- Ghost collisions
- Bounding shape is too big, signals false collision
- Bad physics
- Collision pt at wrong place, angle
- Too accurate then slow

How bound complex shape?

- How would you bound this shape?

Standard collider shapes

(a) Axis-aligned boxes (AABB) (d) Capsules
(b) General bounding boxes
(c) Bounding spheres (ellipsoids)
(e) k-DOPs (k-discrete oriented polytope)

Also - point, mesh, convex hull

What would you use?

Fitting the collider

- Data is a set of points
$0 \quad 0$

Fitting the collider

- Centroid and convex hull

Detecting collisions - how?

- $A A B B \times A A B B$
- Box x Box
- Sphere x Sphere
- Capsule x Capsule

Readings

- David Mount's lectures on Geometric problems, and on Geometric Data Structures
- Good tutorial on collisions
- https://www.toptal.com/game/video-game-physics-part-ii-collision-detection-for-solid-objects

