
CMSC425 Midterm 2 Prep and practice

The midterm on May 8th will be in class, closed book, and similar to Midterm 1. There will be 5
to 6 questions, up to seven pages, with the first question short answer and the rest applications
of the concepts. Questions from the homeworks are fair game, as are questions from lectures
before spring break and the practice midterm exams from spring and fall 2018. Question on
Unity will be limited, and based on what you should have learned in Project 1.

Possible concepts and questions include:
1. Metrics for best path on map
2. Navmesh process (R_D_P algorithm, triangulation)
3. Walkable terrain
4. Find paths on triangulated space
5. Configuration spaces
6. Quality of path
7. C-obstacles
8. Minkowski sums
9. Navmesh - grid, mulitresolution grid
10. Visibility graph
11. Medial axis
12. Randomized placement
13. Rapidly-expanded Random Trees (RRTs)
14. L-system plus turtle
15. Fractal dimension
16. Randomized and 3D L-systems
17. Particle systems
18. Flocking
19. Mandelbrot sets
20. Constructive solid geometry
21. Shading equation
22. Bump mapping
23. Polygonal meshes - basics, Euler's formula
24. DECL data structures
25. Perlin noise
26. A*
27. Admissible heuristic
28. Multiplayer cheating attacks
29. Forbidden velocities for crowd motion
30. Curves and patches (linear, cubic, bilinear, Hermite cubic, matrix representation)

Practice questions

See examples from lectures:
Day 22, slide 37
Day 20, slides 31, 32, 33
Day 19, slide 39
Day 17, slide 35
Day 15, slide 24

Examples from previous semesters:
(Some used on homeworks already)
Homework 2, Spring 17: Questions 1b, c, d, (not e); 2; 3; not sure about 4.
Second Midterm, Spring 17: Questions 1a, b, (not c), d, e, f; 2; 3; 4
Homework 2, Spring 2016: Questions 1a, b, (not c), d; 2; 3; (not 4)

CMSC 425 : Spring 2017 Dave Mount

Homework 2

Handed out Thu, April 27 (and revised Mon, May 1). Due at the start of class Thu, May 4. Late
homeworks will not be accepted (without prior approval), so turn in whatever you have done.

Problem 1. Short answer questions.

(a) In skinning, what is principal reason for binding a mesh vertex to multiple joints?

(i) Allows joints to rotate in multiple directions (like a neck) as opposed to just one
(like the middle joint of a finger)

(ii) Enhanced efficiency when rendering very large meshes

(iii) Allows the mesh to deform smoothly as the joints rotate

(iv) All of the above

(b) In the Ramer-Douglas-Peucker algorithm for simplifying a polygonal curve, what is the
criterion for selecting the next vertex to be added to the curve?

(c) How many dimensions are there in the configuration spaces for each of the following
motion-planning problems. Justify your answer in each case by explaining what each
coordinate of the space corresponds to.

(i) Moving a line segment in 2-dimensional space, which may be translated and rotated.

(ii) Moving a line segment in 3-dimensional space, which may be translated and rotated.

(iii) Moving a pair of scissors in 3-dimensional space, which may be translated, rotated,
and may swing open and closed.

(d) What is the principal advantage of selecting a path that travels along the medial axis of
the free-space?

(e) Which of the following aspects of human sound perception allow us to determine the
location that a sound comes from? (Select all that apply.)

(i) Our auditory systems detect differences in the arrival times of sounds to each of our
ears

(ii) Sound waves reflect off our upper body, head, and outer ears in different ways
depending on the origin of the sound

(iii) People move their head purposively while listening to a sound to determine its origin

(f) In our description of the four elements of the boid model for flocking behavior (sepa-
ration, alignment, avoidance, and cohesion), what is the purpose of cohesion, and how
might it be implemented?

Problem 2. Consider the quadrilateral A and square B, shown in Fig. 1. The quadrilateral A’s
reference point is located at the origin, that is, pa = (0, 0), and the other vertices are at (2, 0),
(1, 2), and (0, 2). The square B’s reference point is at pb = (3, 4) and its other vertices are at
(5, 3), (6, 5), and (4, 6). Object A can translate but not rotate.

The configuration obstacle of B with respect to A is the set of placements of A’s reference point
so that it overlaps B. Describe (draw clearly or explain with coordinates) the configuration
obstacle of B with respect to A.

1

A

B

x

y

pa

pb

Figure 1: Problem 2.

Problem 3. In this problem we consider the performance of Dijkstra’s algorithm and A∗ search
on the graph shown below (see Fig. 2), where the objective is to compute the shortest path
from s to t. Each edge (u, v) is undirected and is labeled with its associated weight w(u, v).

b

start end

5

4

4

dist1(a, t) = 8 + 3 = 11

s c

11

2

a

t

11

Figure 2: Problem 3.

For A∗ search we need to make use of a heuristic. To save you from dealing with square
roots, as we did in the example from class, we will use the L1 (also called Manhattan or
checkerboard) distance between two points. It is defined to be the sum of the absolute values
of the difference of the x and y coordinates of the points. For example, in the figure the L1

distance between nodes a and t is dist1(a, t) = 8 + 3 = 11. For A∗ search define the heuristic
value for each node u to be L1 distance from u to t. For example, h(a) = 11. (For this graph
it is easy to verify that h(·) is an admissible heuristic.)

(a) Trace the execution of Dijkstra’s algorithm on this graph. For each node indicate the
following: (1) list the nodes in the order in which they are processed, (2) whenever
a node is processed, indicate which of its neighbors have had their d-values modified,
when the algorithm terminates (that is, when t is considered for processing), indicate
what the final d-values are for all the nodes. If there are ties for which node is to be
processed next, select the node that is earliest in alphabetical order. (As an example,
see Lecture 16.)

(b) Trace the execution of A∗ Search on this graph. Provide the same information as in

2

(a), but also provide the A∗ f -values for each node that is processed (recall that f(u) =
d[u] + h(u)).

(c) Remark on the differences (if any) in the length of the path generated and the differences
(if any) in the efficiency between these two algorithms.

Problem 4. One of the options that Unity (and other game engines) offer when dealing with
Navigation Meshes is the ability to specify the size of the moving agent. Suppose that the
moving agent is a circular disk of radius r (see Fig. 3(a)). One way to deal with this size
is to “shrink” the accessible domain by this radius before triangulating the domain. In this
problem, we will explore a different method. (This method has some additional advantages,
since we can change the value of the radius without recomputing the navigation mesh.)

Here is the idea. Suppose that we have already computed a navigation mesh of the entire

accessible domain (no shrinking). The mesh is represented by a triangulation T , which is
stored using a DCEL data structure. The mesh contains two types of faces: the triangles of
the navigation mesh, and obstacle faces. The obstacle faces are not required to be triangles.
In order to identify what type of face you have, each face f of the DCEL has an additional
field isObstacle. If f.isObstacle is true, then this face is an obstacle. Otherwise, it is part of
the navigation mesh. (For example, in Fig. 3(a), the two shaded faces, the external face and
the inner triangle, are both obstacles.) Throughout, we will assume that every vertex of the
navigation mesh is adjacent to one obstacle face, and two obstacle edges.

(b) (c)(a)

r

s

t

r

Figure 3: Problem 4.

Given that our moving agent is a circular disk of radius r, to determine where its center
point may navigate, we shrink the accessible domain by a distance of r. (This is shown in
the dashed lines of Fig. 3(b).) This is called an offset contour. Rather than storing the entire
offset contour, we will just store where it intersects the edges of the triangulation. (These are
shown as white dots in Fig. 3(b).) Observe that the agent can safely move from one triangle
to a neighboring triangle if the edge between these triangles contains a window, that is, a line
segment that lies entirely within the portion of the mesh that is beyond the offset contour.
(These window segments are shown as heavy lines in Fig. 3(c). Two edges of the triangulation
in the figure are so short that they do not have a window, and therefore the agent cannot

3

travel across these edges.)

In this problem, we will investigate how to compute these windows and use them to compute
paths in that navigation mesh that provide a clearance of r from the obstacle boundaries.
Note: After writing the problem, I realized that there are conditions under which an edge
may have multiple windows. To simplify matters, let’s assume that this never happens. For
example, I believe that if all the triangles of the navigation mesh are acute, each edge can
have at most one window.

(a) Let e be any half edge of the navigation mesh such that e.left.isObstacle (see Fig. 4(a)).
Using the operations of a DCEL, explain how to obtain the half edges e′ and e′′ that
immediately precede and follow e, respectively, in counterclockwise order around the ob-
stacle face. Also, explain how to obtain the vertices a and b at e’s origin and destination,
respectively. The operations should all take O(1) time.

e
e1

e2

e3

e4

e5
e6

e′′

e′

ai

bi

pi

e r

(b)(a)

b

a

ei

ai

pi?

e r

(c)

ei

e′

bi

Figure 4: Problem 4 (continued).

(b) Using the operations of a DCEL, present a code fragment that returns a list L containing
the half edges ⟨e1, . . . , ek⟩ that are incident to a and b, not including edges that border
the obstacle that is incident to e. (For example, in Fig. 4(a), L consists of ⟨e1, . . . , e6⟩.)
These half edges should all be directed outwards from a and b, and the list should be
computed in time proportional to the number of edges in the list.

(c) For any half edge ei ∈ L, let ai and bi denote its origin and destination, respectively (see
Fig. 4(b)). Given distance r ≥ 0, explain (using the geometrical operations discussed in
class) how to compute the point pi along this edge that is at distance r from the obstacle
edge e. (Consider only the edge e. The other incident edges e′ and e′′ will be considered
in the next parts.)

Hint: I found it helpful for solving parts (d) and (e) to represent the point pi as ai+αv⃗i,
where v⃗i is a vector aligned with the line segment aibi, but this is not a requirement.
There are cases, depending on whether ai = a or ai = b, and whether the angle between
the (undirected) edges ei and e is acute or obtuse.

(d) The point pi computed in part (c) considers only one of the two obstacle edges incident
on ai. Assuming that we have applied part (c) to both of the edges incident to ai, explain

4

how to compute which of these two points are to be used for the purposes of computing
the window along this edge. (For example, in Fig. 4(c) we show two possible points pi,
one computed for edge e and the other for e′. How would you determine which of the
two defines the endpoint of the window?)

(e) Given your answer to (d) and under our assumption that each edge has at most one
window, for each triangulation edge (ai, bi), we have two window endpoints. One point
pi is at distance r from the obstacle incident to ai, and the other point qi is at distance
r from the obstacle incident to bi. Explain (using the geometrical operations discussed
in class) how to determine whether the window segment for this edge is nonempty.

By the way, here is an explanation of how to complete the path computation, assuming you
have successfully solved parts (a)–(d). Given a source point s and a destination point t, we
first verify that both are at distance at least r from the nearest obstacle (otherwise there
clearly is no path). Assuming so, we determine whether there is a path between them by
computing the dual graph of the triangulation, where we keep only those dual edges whose
corresponding windows are nonempty. Then, we determine whether the triangles containing
s and t are connected by a path in this graph. Such a path passes from one triangle to the
next through a window. It is not hard to show that if two edges of a triangle have nonempty
windows, there exists a path of clearance r from one edge to the other. (You do not need to
explain how to do this.)

Challenge Problem: In Problem 4, I observed that it is possible for a triangulation edge to have
multiple windows. Draw an example to illustrate how this can happen. For a real challenge,
prove that if all the triangles of the navigation mesh are acute, for any value of r ≥ 0, each
edge has at most one window.

5

CMSC 425 : Spring 2017 Dave Mount

Second Midterm Exam

This exam is closed-book and closed-notes. You may use two sheets of notes (front and back).
Write all answers in the exam booklet. You may use any algorithms or results given in class. If
you have a question, either raise your hand or come to the front of class. Total point value is 100
points. Good luck!

Problem 1. (30 points, 3-8 points each) Short answer questions. Explanations are not required,
but may be given for partial credit.

(a) The Unity mechanim animation system has a feature that can set the joint angles of
a humanoid model to cause it to turn its head to face a particular direction. (Really!)
This would best be described is an example which of the following animation techniques
(select one):

(i) Keyframe animation

(ii) Motion capture

(iii) Inverse kinematics

(b) Our proposed algorithm for triangulating the walkable region in the construction of
navigation meshes repeatedly cut off the ear such that the cutting edge has minimum
length. What is an ear of a simple polygon? What is the reason for favoring short
cutting edges?

(c) List one advantage and one disadvantage of using the potential-field approach to com-
puting paths.

(d) In our description of the four elements of the boid model for flocking behavior (separa-
tion, alignment, avoidance, and cohesion), what is the purpose of alignment, and how
might it be implemented?

(e) Behavior trees have two types of task nodes, sequences and selectors. In a sequence node,
its children are evaluated from left to right, and each returns either success or failure.
Under what circumstances does the sequence node itself return success?

(f) Repeat (e), but this time for a selector node.

Problem 2. (25 points) Answer the following questions assuming that you are given a planar
subdivision (i.e., cell complex of a 2-manifold) represented as a DCEL.

(a) Present a procedure (in pseudocode) that, given a half edge e of the DCEL, returns a
list L consisting of the vertices that are adjacent to either of e’s endpoints. The vertices
should be listed in counterclockwise order about e. The list can start with any vertex,
and duplicates are allowed.

For example, given the example shown in Fig. 1(a), the list L = ⟨v0, v1, . . . , v6⟩ would
be one valid result (as would any cyclical shift of this sequence). Your procedure should
run in time proportional to the length of the output. (Hint: The answer is simpler if
you choose the starting point carefully.)

1

v

e1
e2

e3

e4

e5
e6

e7

e0
e

v0

v1
v2

v3

v4

v5

v6

(b)(a)

Figure 1: Problem 2.

(b) Given vertex v in a cell complex of a 2-manifold, the link of v is defined to be the edges
that bound the faces that are incident to v, excluding the edges that are incident to
v itself. (For example, in Fig. 1(b), the link of v consists of the edges ⟨e0, e1, . . . , e7⟩.)
Present a procedure (in pseudocode) that, given a vertex v of the DCEL, returns a
list L consisting of the half edges of v’s link. The half edges should be directed in
counterclockwise order about v and the list should also be ordered in the same way.
The list can start with any half edge of the link. Your procedure should run in time
proportional to the length of the output.

Problem 3. (20 points) Consider the collection of shaded rectangular obstacles shown in the figure
below, all contained within a large enclosing rectangle. Also, consider the triangular robot,
whose reference point is located at a point s. (You may take s to be the origin.)

s

t

Figure 2: Problem 3.

(a) Draw the C-obstacles for the three rectangular obstacles, including the C-obstacle from
region lying outside the large enclosing rectangle.

(b) Either draw an obstacle-avoiding path for the robot from s to t, or explain why it doesn’t
exist.

2

Problem 4. (25 points) In this problem, we will consider A∗ search under both admissible and
inadmissible heuristics. Please use the version of A∗ given in class.

Consider the graph shown in Figure 3. For each node u, define dist(u, t) to be the straight-line
distance from u to t. For example, dist(s, t) = 8 and dist(c, t) = 2.

start end

a b cs t
2 2 22

3

6

3 3

(a)

6
4

2

8

start end

a b cs t
2 2 22

3

6

3 3

(b)

12
8

4

16
h-values h-values

Figure 3: Problem 4.

(a) Suppose that we take the admissible heuristic h(u) = dist(u, t) (see Fig. 3(a)). (For
example, h(s) = 8, h(c) = 2 and h(t) = 0.) Trace the execution of the A∗ algorithm on
this graph using s as the start and t as the destination. In particular:

• list the nodes as they are processed, indicating the values of d[u] + h(u)

• whenever a node is processed, indicate how the d-values of its neighbors are updated

At the end (when t is processed), show the final d-values are for all the nodes.

(b) Suppose that we take the inadmissible heuristic h(u) = 2 ·dist(u, t) (see Fig. 3(b)). (For
example, h(s) = 16, h(c) = 4 and h(t) = 0.) Repeat (a) but using this different value of
h.

(c) Did the algorithm produce the correct answer in part (b)? Explain briefly.

3

A∗ Search
A-Star(G, s, t) {
foreach (node u) { // initialize
d[u] = +infinity; mark u undiscovered

}
d[s] = 0; mark s discovered // distance to source is 0
repeat forever { // go until finding t
let u be the discovered node that minimizes d[u] + h(u)
if (u == t) return d[t] // arrived at the destination
else {
for (each unfinished node v adjacent to u) {
d[v] = min(d[v], d[u] + w(u,v)) // update d[v]
mark v discovered

}
mark u finished // we’re done with u

}
}

4

CMSC 425:Spring 2016 Dave Mount

Homework 2

Handed out Tue, May 3. Due at the start of class Tue, May 10. Late homeworks will not be
accepted (without prior approval), so turn in whatever you have done.

Problem 1. Short answer questions.

(a) Consider the design of a decision-making AI system based on behavior trees. Give an
example of a task involving multiple decisions where a sequence task would be appropri-
ate.

(b) Given the same scenario as (a), give an example of a task involving multiple decisions
where a selection task would be appropriate.

(c) List one advantage and one disadvantage of the use of potential-field navigation as a
means for computing paths in a game.

(d) When computing navigation meshes, we applied a step that simplified the polygonal
region that modeled the walkable area. (That is, we approximated this region by elim-
inating vertices.) What was the principal reason for doing this simplification? What
would be the danger of excessive simplification (removing too many vertices)?

Problem 2. Consider the triangle a and polygon b, shown in Fig. 1. (Triangle a’s reference point
is located at the origin, that is, pa = (0, 0) and b’s reference point is at pb = (2, 4).)

a

b

x

y

pa

pb

Figure 1: Problem 2.

The configuration obstacle of b with respect to a is the set of placements of a’s reference point
so that it overlaps b. Describe (draw clearly or explain with coordinates) the configuration
obstacle of b with respect to a.

Problem 3. In this problem we consider the performance of Dijkstra’s algorithm and A∗ search
on the graph shown below (see Fig. 2), where the objective is to compute the shortest path
from s to t. Each edge (u, v) is undirected and is labeled with its associated weight w(u, v).

For A∗ search we need to make use of a heuristic. To save you from dealing with square
roots, as we did in the example from class, we will use the L1 (also called Manhattan or

1

b

start end

5

3

3

dist1(a, t) = 8 + 3 = 11

s c

10

2

a

t

11

Figure 2: Problem 3.

checkerboard) distance between two points. It is defined to be the sum of the absolute values
of the difference of the x and y coordinates of the points. For example, in the figure the L1

distance between nodes a and t is dist1(a, t) = 8 + 3 = 11. For A∗ search define the heuristic
value for each node u to be L1 distance from u to t. For example, h(a) = 11. (For this graph
it is easy to verify that h(·) is an admissible heuristic.)

(a) Trace the execution of Dijkstra’s algorithm on this graph. For each node indicate the
following: (1) list the nodes in the order in which they are processed, (2) whenever
a node is processed, indicate which of its neighbors have had their d-values modified,
when the algorithm terminates (that is, when t is considered for processing), indicate
what the final d-values are for all the nodes. If there are ties for which node is to be
processed next, select the node that is earliest in alphabetical order. (As an example,
see Lecture 19.)

(b) Trace the execution of A∗ Search on this graph. Provide the same information as in
(a), but also provide the A∗ f -values for each node that is processed (recall that f(u) =
d[u] + h(u)).

(c) Remark on the differences (if any) in the length of the path generated and the differences
(if any) in the efficiency between these two algorithms.

Problem 4. Recall that in visibility-based pursuit-evasion games, you are given a domain and two
agents, a pursuer p and an evader e. The pursuer selects a path π through the domain, and
moves at constant speed along this path. The evader has knowledge of this path and can
predict the exact location of the pursuer at any time. The evader can move at arbitrarily high
speed. For a given pursuit path π, the evader avoids detection if it is possible for the evader
to move in such a way that the pursuer never has a line of sight to the evader. If the pursuer
can find a path π for which the evader cannot avoid detection, then the pursuer wins. If for
every possible path chosen by the pursuer, the evader can avoid detection, then the evader
wins

Consider the three domains shown in Fig. 3. For each, indicate whether the pursuer wins
or the evader wins. If the pursuer wins, draw an example of a path π for which the evader
cannot avoid detection. (For the fullest credit, your path should be reasonably short, and
not involve unnecessary detours.) If the evader wins, give an intuitive explanation as to why

2

the pursuer cannot find such a path. (It is not necessary that your explanation is a rigorous
proof. Explain where the “trouble spots” are within the domain.)

(a) (b) (c)

Figure 3: Problem 4.

Problem 5. In this problem we consider motion planning in a dynamic setting. The objective is
to design a gamebot that can play a simplified version of the classic video game Galaxian.

You are given a robot that consists of a line segment of unit length that resides on the x-axis.
The robot can move left or right (but not up or down) at arbitrary speeds. You are given
two real values x− and x+, and the robot must remain entirely between these two values at
all times (see Fig. 4). The robot’s reference point is its left endpoint, and at time t = 0, the
left endpoint is located at x−. (You may assume that x+ > x− + 1.)

x− x+1

pi = (xi, yi)

Figure 4: Problem 5.

You are also given a set of missiles in the form of n vertical line segments, each of length 0.2,
that fall down from the sky at a speed of 2 units per second. Each of these vertical segments
is specified by the coordinates of its lower endpoint at time t = 0. So, if pi = (xi, yi) is the
starting position of the ith missile, then at time t its lower endpoint is located at (xi, yi−2t),
and its upper endpoint is at (xi, yi − 2t+ 0.2). You may assume that x− ≤ xi ≤ x+.

The question is whether it is possible for the robot to move in a manner to avoid all the
missiles. We will explore an algorithm for solving this problem.

(a) A natural way to define the robot’s configuration at any time is as a pair (t, x), where
t is the current time, and x is the x-coordinate of the robot’s left endpoint. Based on

3

this, what is the C-obstacle associated with a missile whose starting position is pi (as
defined above)? In other words, describe the set of robot configurations (t, x) such that
the robot intersects this missile. (Explain/draw the exact shape of the C-obstacle, its
dimensions, and its location in space. Don’t just express it abstractly as a Minkowski
sum.)

(b) Given the C-obstacles for all the missiles, under what circumstances is it possible to win
the game? Express your answer by describing the properties of a path in configuration
space, leading from the starting position to the end of the game. (I do not need a
complete algorithm, just an explanation of what properties of the C-obstacle placements
allow the game to be won.)

(c) Suppose you are told that the robot has a maximum speed σ (in units per second) that it
can move at. How would you modify your answer to (b) to address this new limitation?

4

