
CMSC	425:	Spring	2019	

Programming Assignment 1: Unity Geometry Game

Due: Part	1	is	due	Thursday,	Feb	14,	11:59pm.	Part	2	is	due	Thursday,	Feb	28,	11:59pm.	

Late policy: Up	to	6	hours	late:	5%	of	the	total;	up	to	24	hours	late:	10%,	and	then	10%	for	each	additional	24	
hours.	Submission	instructions	will	be	given	later.	

The	purpose	of	this	assignment	is	to	learn	the	basics	of	Unity	by	making	a	simple	action	shooter	game	involving	
Unity’s	primitive	geometric	shapes.	The	game’s	structure	is	based	on	the	Unity Roll-A-Ball tutorial (see	
https://unity3d.com/learn/tutorials/s/roll-ball-tutorial).	The	assignment	consists	of	two	parts.	

Part 1: Make	the	following	modifications	to	the	Roll-A-Ball	tutorial:	

Replace ball with cube: Replace	the	rolling	ball	with	a	cube,	called	the	Player.	(Generally,	you	can	pick	any	
shape	you	like,	provided	that	it	is	rotationally	asymmetrical,	so	that	it	is	possible	to	distinguish	which	
side	is	the	front.)	

Gliding motion: Rather	than	rolling,	the	Player	glides	on	or	just	above	the	ground.	The	left	and	right	
arrow	keys	(or	the	‘A’	and	‘D’	keys)	cause	the	Player	to	rotate	counter-clockwise	and	clockwise,	
respectively.	The	up	and	down	arrow	keys	(or	the	‘W’	and	‘S’	keys)	cause	the	Player	to	move	forward	
and	backward,	relative	to	the	direction	it	is	facing.	(As	in	the	Roll-a-Ball	tutorial,	you	can	use	Unity’s	
Input.GetAxis	commands	to	access	these	inputs.)	

Camera follows behind Player: Rather	than	placing	the	camera	above	the	entire	scene,	the	camera	follows	
the	Player	from	behind	and	slightly	above,	as	is	common	in	action-adventure	games	(see	Fig.	1).	

Easy to win: To	make	the	grading	simpler,	rather	than	requiring	the	Player	to	collect	all	the	pickups,	
there	should	be	a	public	variable	called	pickupQuota	in	your	PlayerController	class	that	will	allow	the	
grader	to	control	the	number	of	pickups	that	must	be	collected	in	order	to	win	the	game.	The	grader	
should	be	able	to	adjust	the	value	of	this	variable	in	the	Unity	editor	(in	the	Inspector	window	for	the	
Player	object).		

Figure	1:	Part	1:	A	top-down	view	of	the	initial	game	layout	and	a	sample	view	with	the	player	in	the	south-east	
corner	looking	north-west.	

The	rest	of	the	game	is	the	same	as	Roll-A-Ball.	The	Player	starts	at	the	center	of	board,	moves	around	and	
collects	pickups	by	running	over	them.	The	number	of	pickups	collected	should	be	displayed.	When	the	Player	
has	collected	the	given	quota	of	pickups,	an	appropriate	message	should	be	displayed.	

Part-2: In	this	part	you	will	create	a	two-level	game.	The	first	level	will	consist	of	Part	1,	and	the	second	level	will	
be	a	shooting	game.	Before	reading	the	description	below,	you	may	want	to	just	try	playing	the	game.	(See	the	
link	below	for	the	sample	executable.)	

Environment: The	environment	consists	of	square	platform	with	walls	forming	a	maze-like	structure	(see	
Fig.	2).	You	are	free	to	creatively	modify	this	arrangement.		

Figure	2:	Part	2:	A	top-down	view	of	the	initial	game	layout	and	a	sample	view.	We	have	replaced	the	default	
Unity	skybox	with	a	solid	color.	

Player: As	in	Part	1,	the	Player	object	is	a	cube	(or	any	rotationally	asymmetric	shape)	the	moves	in	the	same	
manner	as	in	Part	1,	but	has	two	additional	capabilities.	

• Whenever	the	space	bar	is	hit,	the	Player	jumps	vertically,	and	gravity	pulls	it	back	down.	
Repeatedly	hitting	the	space	bar	(while	in	the	air)	causes	Player	to	jump	higher	and	higher.	In	our	
implementation,	the	player’s	motion	controls	function	even	when	the	player	is	in	the	air.	You	can	
choose	to	do	the	same	or	to	disable	motion	while	in	the	air.	

• Whenever	the	left	mouse	button	is	pressed,	the	player	shoots	a	projectile	horizontally	in	the	
direction	that	it	is	facing.	In	our	implementation,	the	projectile	is	a	prefab	consisting	of	a	group	of	
five	green	spheres,	all	encased	within	a	capsule	collider.	

Pickups: The	pickups	can	be	rendered	as	in	Part	1	(rotating	cubes),	but	they	should	also	oscillate	up	and	
down,	somewhat	like	a	yo-yo.	Unlike	the	Player,	which	is	controlled	by	gravity,	the	pickups	should	
oscillate	in	a	periodic,	sinusoidal	manner.1	Their	oscillations	should	not appear	to	be	synchronized	with	
each	other.	(This	can	be	done	through	the	use	of	a	random-number	generator,	or	you	can	define	some	
public	variables	in	your	controlling	script	that	can	be	adjusted	within	the	Unity	editor.)	

Scoring: Whenever	the	Player	fires	a	shot	that	hits	a	pickup,	the	Player	is	awarded	the	pickup.	When	a	
sufficient	number	of	pickups	are	hit,	the	player	wins.	As	in	Part	1,	the	number	of	pickups	needed	to	win	
should	be	adjustable	through	a	public	variable.	

Hitting a Pickup: Unlike	Part	1,	hitting	a	pickup	is	fatal	to	the	Player.	You	lose	immediately.	

Start Menu: The	game	begins	in	a	start	menu	with	three	buttons:	One	to	play	Part	1,	one	to	play	Part	2,	
and	one	to	“Quit”,	which	ends	the	program.	As	each	of	the	levels	is	ended,	you	return	to	this	menu.	
(There	is	a	nice	online	tutorial	for	creating	such	menus.	We	will	provide	a	link	in	the	class	Projects	page.)	

Quit: From	within	Parts	1	or	2,	it	should	be	possible	to	quit	the	level	at	any	time	by	hitting	either	the	‘Q’	
or	ESC	keys.	This	should	return	control	to	the	start	menu,	from	which	either	level	can	be	restarted.	Also,	
from	the	start	menu,	the	game	can	be	terminated	by	hitting	the	“Quit”	button.	(Beware:	It	is	not	possible	

1 This	is	because	we	want	you	to	combine	kinematic	game	objects	with	those	that	are	not	kinematic,	that	is,	controlled	by	physics.

to	terminate	the	program	when	running	the	WebGL	version	or	when	testing	in	the	Unity-editor.	You	
have	to	build	an	executable	to	test	this.)	

Delaying between Levels: We	would	like	the	transition	to	the	start	menu	to	involve	a	short	delay.2	As	in	
Part	1,	at	the	end	of	the	level,	you	should	print	a	short	message	to	the	center	of	the	screen	(e.g.,	“You	
Won!”,	“You	Lost!”,	or	“Quitting”).	Then,	after	a	short	delay	(we	used	2	seconds)	the	Start	Menu	screen	
should	appear.	

Exploding pickups: When	a	pickup	is	hit	(either	by	being	shot	or	being	hit	by	the	Player	object)	an	
explosion	effect	should	result.	The	easiest	way	to	implement	this	is	to	use	a	Unity	particle	system.	(There	
are	numerous	online	tutorials	about	generating	explosions.	Feel	free	to	steal	one,	but	remember	to	cite	
your	sources.)	

Dimming the Screen: One	of	the	nice	effects	in	our	implementation	is	that	when	displaying	text	in	the	
center	of	the	sceen,	we	dim	the	screen	but	still	allow	the	background	to	show	through.	See	if	you	can	
figure	out	how	to	do	this.	Hint:	It	only	takes	a	few	lines	of	code	and	involves	a	semi-transparent	UI	
element.)	

Prioritizing: There	are	quite	a	few	items	listed	above.	They	are	listed	in	order	from	most-important	to	
least-important.	If	you	cannot	finish	all	of	them,	we	will	give	partial	credit,	but	you	will	maximize	your	
score	if	you	complete	them	in	top-down	order.	

Many	of	the	elements	needed	to	implement	Part	2	have	not	been	discussed	in	class.	Please	see	the	class	Projects
Web page for	hints	(http://www.cs.umd.edu/class/spring2019/cmsc425/projects.shtml).	

Final Submission: Detailed	submission	instructions	will	be	posted	later.	(If	you	are	ready	to	submit	and	do	not	see	
the	instructions,	please	remind	me.)	

Sample Executable: We	have	posted	a	sample	executable	in	the	Projects	page	of	our	class	web	page:	
http://www.cs.umd.edu/class/spring2018/cmsc425/projects.shtml	

This	is	just	for	guidance.	You	are	not	required	to	mimic	our	exact	look	and/or	behavior.	

Common Questions:

• “Does my implementation have to look/behave exactly like yours?”
No.	In	fact,	you	are	encouraged	to	make	creative	changes	to	suit	your	own	taste,	provided	that	your	submission	
satisfies	the	spirit	of	our	requirements	and	achieves	the	same	learning	objectives.	For	example,	suppose	that	our	
game	involves	using	Unity’s	particle	system	to	achieve	a	visual	effect,	and	you	replace	it	with	something	that	does	
not	use	a	particle	system.	You	should	insert	a	particle	system	somewhere	else	in	your	game	just	to	convince	the	
grader	that	you	have	mastered	this	requirement.	
If	you	are	wondering	whether	your	modifications	are	acceptable,	please	check	with	your	instructor	at	least	24	
hours	before	the	due	date.	

• “Will you deduct points for poor programming style?”
Possibly.	While	we	encourage	clean	programming	structure,	this	will	not	constitute	a	major	part	of	the	grade.	

2 2This	is	mostly	to	give	you	exposure	to	coroutines.	

Most	of	you	will	be	new	to	Unity	programming,	and	we	will	be	forgiving	of	awkward	structure,	especially	in	the	
first	assignment.	Nonetheless,	we	reserve	the	right	to	deduct	points	for	programs	that	are	so	poorly	documented	
or	organized	that	the	grader	cannot	figure	out	how	your	program	works.	

• “Can I get extra credit if I exceed your requirements?”
Yes.	We	ask	the	graders	to	assign	credit	for	additional	work	that	goes	beyond	our	basic	require-	ments.	These	
extra-credit points are	not	part	of	the	assignment	score,	but	instead	are	recorded	separately.	At	the	end	of	the	
semester,	final	grade	cutoffs	are	determined	without	consideration	of	these	extra-credit	points.	Thus,	your	grade	
cannot	be	negatively	influenced	by	not	doing	extra-	credit	work.	However,	if	your	final	score	is	just	below	a	cut-
off	between	two	letter	grades,	we	may	take	these	extra-credit	points	into	consideration	before	assigning	the	final	
course	grade.	

• “Can I make use of resources that I got from elsewhere?”
Yes,	provided	these	resources	to	not	circumvent	the	assignment’s	learning	objectives	and	provided	the	you	cite	
where	you	got	the	resources.	For	example,	if	you	downloaded	a	cool	model	from	the	Unity	asset	store	or	if	you	
implemented	something	you	learned	from	an	online	tutorial,	you	must tell	us	your	sources.	(To	otherwise	would	
be	taking	credit	for	someone	else’s	work.	Doing	so	will	not affect	your	grade	negatively,	but	failing	to	do	so	may	
result	in	disciplinary	action.)	You	are	encouraged to	tell	us	how	you	modified	it	to	make	it	work,	since	we	would	
like	to	give	you	credit	for	your	effort.	

