CMSC425 Notes

Building a rotation matrix directly

Building a rotation matrix from Euler angles, or even angle-axis, can be tricky. One frequently used trick is to build a matrix from two 3D coordinate frames.

Assume you want to rotate the standard coordinate frame vectors i, j and k to or from a new coordinate frame u, v, n so u-> i, v-> j and n-> k. You can build the orthonormal rotation matrix directly by putting the u, v and n vectors in as rows:

$$
M_{r}=\left[\begin{array}{lll}
u x & u y & u z \\
v x & v x & v z \\
n x & n y & n z
\end{array}\right]=\left[\begin{array}{c}
\vec{u} \\
\vec{v} \\
\vec{n}
\end{array}\right]
$$

Now when we put in the vectors u, v and n , we get the standard vectors as output. This uses the fact that u, v and n are orthonormal $-\operatorname{dot}(u, u)=1$ but $\operatorname{dot}(u, v)=\operatorname{dot}(u, n)=0$.

$$
M_{r} \vec{u}=\left[\begin{array}{ccc}
u x & u y & u z \\
v x & v y & v z \\
n x & n y & n z
\end{array}\right]\left[\begin{array}{c}
u x \\
u y \\
u z
\end{array}\right]=\left[\begin{array}{c}
\vec{u} \cdot \vec{u} \\
\vec{v} \cdot \vec{u} \\
\vec{n} \cdot \vec{u}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

This trick works in reverse. If we want to rotate the i, j and k vectors to become u, v and n, we can build the matrix with u, v and n for columns.

$$
M_{r}{ }^{-1}=M_{r}{ }^{T}=\left[\begin{array}{lll}
u x & u y & u z \\
v x & v y & v z \\
n x & n y & n z
\end{array}\right]^{T}=\left[\begin{array}{lll}
u x & v x & n x \\
u y & v y & n y \\
u z & v z & n z
\end{array}\right]
$$

Now we have i -> u as in

$$
M_{r}{ }^{-1} \vec{\imath}=\left[\begin{array}{ccc}
u x & v x & n x \\
u y & v y & n y \\
u z & v z & n z
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
u x \\
u y \\
u z
\end{array}\right]
$$

Finally, we can observe that the product of M and M inverse is the identity matrix.

$$
M_{r} M_{r}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

