## CMSC425 Transformation notes

## References:

Mount, Lecture 6: Affine Transformations and Rotations plus Rotation Matrix handout

## Outline:

I. Representations

- We represent graphical objects using points, vectors, lines, polylines, patches.
- We transform them using homogeneous coordinates
II. Two-d transforms
A. Representation using matrices and homogenous coordinates

Form: $\mathrm{M}^{*} \mathrm{P}, \mathrm{P}$ column vector - left multiplication
B. Basic affine transforms
i. Translation
ii. Scaling
iii. Rotation
iv. Shear
v. Reflection
C. Inverse of a transform
D. Composition of transforms
i. Rotation about an arbitrary pivot point
ii. Scaling and shearing about same
iii. Other examples
E. Properties of affine transformations
i. Lines into lines, planes into planes
ii. Ratios are preserved
iii. Areas go by det M
II. Three-d transforms
A. Elementary transforms
i. Translation
ii. Scaling
iii. Shearing
iv. Rotations
a. Euler angles: elementary rotations about $x, y$ and $z$

Roll, pitch, yaw
b. Rotations around an arbitrary axis - angle axis
c. Finding the rotation matrix from the new axes directly (Handout)
B. Quaternions
i. Why use quaternions. Smooth interpolation, no gimbal lock
ii. Review of imaginary numbers a + bi

Operations: product, conjugate a-bi
iii. Quaternions $\quad \mathbf{q}=\mathrm{q} 0+\mathrm{iq} 1+\mathrm{jq} 2+\mathrm{kq} 3 . \quad \mathrm{i}, \mathrm{j}, \mathrm{k}$ $\mathbf{q}=(\mathrm{s}, \mathbf{u}) \quad \mathrm{s}$ scalar, $\mathbf{u}$ vector
iv. Operations: conjugate ( $\mathrm{s},-\mathbf{u}$ ), modulus, multiplication
v. Rotating vector by quaternion

