CMSC425 Transformation notes

References:

Mount, Lecture 6: Affine Transformations and Rotations plus Rotation Matrix handout

Outline:

- I. Representations
 - We represent graphical objects using points, vectors, lines, polylines, patches.
 - We transform them using homogeneous coordinates

II. Two-d transforms

- A. Representation using matrices and homogenous coordinates Form: M*P, P column vector - left multiplication
- B. Basic affine transforms
 - i. Translation
 - ii. Scaling
 - iii. Rotation
 - iv. Shear
 - v. Reflection
- C. Inverse of a transform
- D. Composition of transforms
 - i. Rotation about an arbitrary pivot point
 - ii. Scaling and shearing about same
 - iii. Other examples
- E. Properties of affine transformations
 - i. Lines into lines, planes into planes
 - ii. Ratios are preserved
 - iii. Areas go by det M

II. Three-d transforms

A. Elementary transforms

- i. Translation
- ii. Scaling
- iii. Shearing
- iv. Rotations
 - a. Euler angles: elementary rotations about x, y and z Roll, pitch, yaw
 - b. Rotations around an arbitrary axis angle axis
 - c. Finding the rotation matrix from the new axes directly (Handout)

B. Quaternions

- i. Why use quaternions. Smooth interpolation, no gimbal lock
- ii. Review of imaginary numbers a + bi
 - Operations: product, conjugate a bi
- iii. Quaternions $\mathbf{q} = q0 + iq\mathbf{1} + jq\mathbf{2} + kq\mathbf{3}$. i, j, k
 - $\mathbf{q} = (\mathbf{s}, \mathbf{u})^{\mathsf{T}}$ s scalar, \mathbf{u} vector
- iv. Operations: conjugate (s, -u), modulus, multiplication
- v. Rotating vector by quaternion