Notes on line and plane representations
Readings: Hill, chapter 4 minus 4.5.1, 4.4.2, 4.5.4, 4.6.1, all of 4.8

Line representations		
Two points	Point + vector	Point + normal
		n

Applications

- Distance of point to line (use n from pt+normal form)
- Resolve vector to linear combination of two vectors (use pt+vector form, plus n)
- Reflection vector (use pt+normal form)
- Tweening (use blending parametric)
- Perpendicular bisector (use pt+normal form) => midpoint displacement algorithm
- Intersection of two lines (use pt-vector \& pt-vector, or pt-vector \& pt-normal)

Plane representations		
Three points	Point + two vectors	Point + normal
C	C	$\mathrm{n}=\mathrm{v} 1 \times \mathrm{v} 2$
	A	

Applications

- Distance of point to plane (use n from pt-normal form)
- Intersection of ray with plane (use vector parametric line with pt-normal plane)

Other applications of vector operations

- Angle between two vectors
- Sign of angle between two vectors
- Simplicity of polygon (use line-line intersection)
- Winding direction (use area formula for polygon - if area >0, clockwise)
- Convexity of polygon (use cross product for adjacent lines)
- Normalize vector (find magnitude)

