
Peng Liu, Dale Willis, Suman Banerjee
University of Wisconsin-Madison
2016 IEEE/ACM Symposium on Edge Computing

Presented by Allen Leis and Patrick Jennings

Paradrop: Enabling
Lightweight
Multi-tenancy at the
Network’s Extreme Edge

Agenda

1. Problem Definition
2. Novel Approach
3. Background
4. Proposed / Developed Solution
5. Evaluation
6. Critique

Disclaimer

Unlike previous papers, this paper is light on
certain technical details.

Much of the detail actually included compares
topics like Docker vs LXC.

There are no proofs, formulas, etc.

There is no novelty per se other than the
management and deployment of containers to
WiFi access points.

Problem Definition

Problem Definition

There is a growing need for edge computing however offloaded computation
often occurs in the cloud far away from us.

Think about how many applications are located just in AWS which in the US
has data centers in Northern Virginia, Ohio, Oregon, and Northern
California.

There are limited options to move computation closer to the end user.

“Web programs running in the public cloud” - The Verge

AWS data center locations in gold
https://www.infrastructure.aws/

https://www.infrastructure.aws/

Novel Approach

Novel Approach

Let’s use the Wireless AP/Gateway as a local resource for edge
computing.

We will allow developers (service providers) to build application
images that can be pushed to a user’s AP.

We will provide a management layer and developer tools.

We will leverage standard tools like Ubuntu (Snappy) and Docker.

Why the Wireless AP / Gateway?

Modern APs/gateways are already quite powerful (and growing
stronger).

They sit dormant most of the day.

Everyone has them (basically).

Within reach of all connected devices at the home.

They are always on.

Privacy

Sensitive data never leaves the home

Low Latency

Faster response times compared to

cloud processing

Proprietary friendly

Virtual environment under developer’s

control

Benefits for Developers (And Users)

Local networking

No round trips to the cloud. Store data

locally.

Additional wireless context

Can sense information about

end-devices

Internet disconnectivity

Provide some mission critical service

even during internet outage

Background

What is a Virtual Machine?

A VM is focused on providing
virtual hardware.

You need to install a full OS in
the machine.

You run all the overhead of the
virtual hardware and the OS.

What is a Container?

A container is focused on
providing a virtual operating
system.

The OS kernel is shared (with
Linux namespaces).

Less overhead and better
performance. Less security, etc.

What is a Container (cont)?

Typically, a container runs one
application process (application
server, web server, database
server, etc.)

Multiple containers make for a
great microservices
architecture.

What does the Container Runtime do?

The runtime creates containers
based on images.

It also manages the images and
can usually retrieve them from
elsewhere.

It handles networking, volumes,
etc.

What about Container Orchestration?

You typically want a system for automating the management,

placement, scaling and routing of containers.

Kubernetes is one of the most well known tools for this.

Proposed / Developed
Solution

Access Points
The hardware/software solution in
the home running containerized
applications.

Cloud Management System
Provides centralized management
and communication between
developers and APs.

High Level Architecture

Developer Tools
Allow developers to build images
and notify CMS of the end user to
receive the “chute”.

Communication
Web Application Messaging
Protocol (WAMP) used to
communicate from CMS to AP. All
other communications over HTTP.

An alternate view of the architecture

Platform considerations

Installation should be as simple as possible; a user can add services to their gateway by

simply registering a new account with an application developer

Developers should be able to provide services to their users easily, so a RESTful API is

provided to control and configure services.

Resource management is done through the API; currently CPU, memory, and networking

can all be managed dynamically by the developer.

Design Challenges

Virtualization
Containers were chosen over VMs due to superior performance and less
overhead.

Application Management within the AP
WAMP message routing is used between the consoles and gateways. A local
Paradrop daemon manages the AP.

AP Software Security and Maintenance
Used Ubuntu Snappy - a minimalist version of Ubuntu, it is a lightweight,
transactionally updated OS designed for embedded and IoT devices.

Deployment Workflow

Developer creates application (chute)

Developer pushes to AP via the cloud

manager.

Paradrop daemon receives deployment

command and performs setup.

Paradrop daemon issues commands to

Docker which provisions resources.

Docker starts up new container application

(chute).

Access Points

Typical small board computing (SBC)

hardware is envisioned.

Docker service installed through OS

Speaks to cloud manager through Web

Application Messaging Protocol

(WAMP)

The component local to the user

containing a functional wireless

gateway/AP as well as the ability to

instantiate local applications for edge

computing.

The AP is entirely under command of

Paradrop cloud manager.

A Paradrop daemon runs locally to

manage the OS, deploy applications

(chutes), and all resources (routing,

A daemon that runs on the local

gateway and manages Docker, controls

AP services, and handles

communication with the cloud

manager.

Local network communication is

usually HTTP while communication

with the cloud manager is WAMP.

Paradrop daemon also controls the

firewall, DHCP, WiFi, etc.

Gateway Paradrop Daemon

It also controls resource usage by the

chutes.

Registers the gateway to the Paradrop

backend.

Monitors gateway’s status and reports

to the Paradrop backend.

Receives RPCs and messages from the

Paradrop backend and manage

containers on the gateway accordingly,

e.g. install, launch, stop, uninstall, etc.

Cloud Manager

Centralized management and middle

man between the developers and APs.

It communicates with all the gateways

to dispatch commands and receive

responses and status reports

Aggregates the information from all

the gateways

Will eventually include a web frontend

for visualization, user registration,

chute installation, etc.

Stores information about the users,

gateways and chutes in a MongoDB

database

Still under development (at time of

writing). A chute package must be

available locally for the Paradrop

developer console but future work

would have the manager house the

chute images.

The created applications are
basically Docker image definitions
and support files with a Paradrop
configuration file in YAML.

Allows the developer (service
provider) to build and deploy chutes
to end users.

Allows a developer to create chutes
locally, upload them to the Paradrop
backend.

Allows ability to install chutes to
gateways that they have direct
access to (local).

Developer Tools

Resource policies are used to
control the amount of CPU, network
bandwidth, and RAM used by
chutes.

CPU allocation is handled by Docker
though Paradrop can provide
direction.

CPU shares are in a chute’s config
and are given as abstract values with
a default of 1024.

Resource Management

Network sharing is handled through
the `tc` (traffic control) Linux utility
as it provides for traffic shaping to
limit bandwidth, etc.

Memory maximum is standard for all
chutes.

A 1 GB limit on disk space is
standard for all chutes.

Evaluation

Hardware

The evaluation hardware consisted of

an off the shelf SBC was procured from

PCEngines

https://www.pcengines.ch/apu.htm.

Aside from network interfaces, WiFi,

etc., it comes with an AMD APU 1GHz

processor and 2GB of RAM.

 Snappy Ubuntu was used for the local

OS.

https://www.pcengines.ch/apu.htm

Sample Applications

SecCam

An application for introducing
intelligent processing on video
camera feeds.

Collects live video and analyzes for
motion detection.

Implements user defined alerts.

EnvSense

Collect data from local
environmental sensors.

After collection, it processes, stores,
and visualized the data.

SecCam

Motion detection using Python
libraries

Visualization using PHP

Sensitive video never saved in the
cloud

SecCam

SecCam implementation

Benchmarks for Chute Deployment

Deployment is broken down in lower half of

graphic.

Test results highly dependent on network

bandwidth.

The image is built “just in time” and then used

to create the container.

You could alternatively pre-build the image

and store in in a private repository to skip

this phase.

Evaluation of CPU Resource Management

Chute A and B will attempt to use all

available CPU when activated.

Chute A is a share of 512 and B a share of

1024. The values are abstract and only

relative to each other.

As designed, once both chutes are online

they content for resources.

Chute B correctly ends up with ⅔ of the

CPU.

Evaluation of Network Bandwidth
Management

The linux utility tc is used for traffic shaping

to limit bandwidth use per chute.

Tests were conducted by transferring (HTTP)

a 100MB file from chutes over ethernet.

Seven tests were performed each with a

different limit.

Critique

They are literally describing Kubernetes (initial release June 2014) and Swarm much of the time.

This is probably due to the need for orchestration of Docker containers however it often feels

like they are reinventing the wheel.

Previous versions of ParaDrop ran on OpenWRT but the switched to Ubuntu because "the

operating system disparity on the gateway and the cloud platform could be an obstacle to

develop or port applications" however this is literally the point of using containers.

The idea of containers at the edge are not new and companies have been rushing to fill this

market for a while though none have gotten into the home. See k3s, KubeEdge, etc.

The demo system consists of a SBC by PCEngines that uses a 1Ghz AMD cpu with 2GB of RAM

(https://www.pcengines.ch/apu.htm) on Ubuntu Snappy however they do not offer comparisons

with popular home APs.

Critiques

The authors describe their system as "proprietary friendly" because it is running in a virtualized

environment under their "complete control". However, this is hardware colocated with the user

and is definitely not under their complete control and does not employ untrusted computing

techniques.

Developers are overly smug about renaming containers as "chutes". This rebranding seems to

imply that their contribution is more than orchestration of containers on APs. Many of their

"challenges" they rely on Docker (or Ubuntu, etc.) to solve for them.

Authors seem a little hand-wavey and overly optimistic with some of their claims.

The authors built a REST API that passes JSON as if this is some ground breaking idea.

Critiques

