CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps
The story so far, and what’s next

- Goal: Develop an algorithm that determines whether a string \(s \) is matched by regex \(R \)
 - I.e., whether \(s \) is a member of \(R \)'s language

- Approach: Convert \(R \) to a finite automaton \(FA \) and see whether \(s \) is accepted by \(FA \)
 - Details: Convert \(R \) to a nondeterministic FA (NFA), which we then convert to a deterministic FA (DFA), which enjoys a fast acceptance algorithm
Two Types of Finite Automata

- **Deterministic** Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - Easy to implement acceptance check
 - All examples so far

- **Nondeterministic** Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
DFA for $(a|b)^*abb$
NFA for \((a|b)^*abb\)

- ba
 - Has paths to either S0 or S1
 - Neither is final, so rejected

- babaabb
 - Has paths to different states
 - One path leads to S3, so accepts string
NFA for \((ab|aba)^*\)

- **aba**
 - Has paths to states \(S0, S1\)

- **ababa**
 - Has paths to \(S0, S1\)
 - Need to use \(\varepsilon\)-transition
Comparing NFA and DFA for \((ab|aba)^*\)
Quiz 1: Which DFA matches this regexp?

\[b (b | a+b?) \]

A.

B.

C.

D. None of the above
Quiz 1: Which DFA matches this regexp?

\[b (b | a+b?) \]

A.

B.

C.

D. None of the above
A deterministic finite automaton (DFA) is a 5-tuple $(\Sigma, Q, q_0, F, \delta)$ where

- Σ is an alphabet
- Q is a nonempty set of states
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final states
- $\delta : Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions

What's this definition saying that δ is?

A DFA accepts s if it stops at a final state on s
Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S0, S1\}$
- $q_0 = S0$
- $F = \{S1\}$

<table>
<thead>
<tr>
<th>δ</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S0</td>
<td>S1</td>
</tr>
<tr>
<td>S1</td>
<td>S0</td>
<td>S1</td>
</tr>
</tbody>
</table>

or as $\{(S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1)\}$
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

cur_state = 0;
while (1) {
 symbol = getchar();
 switch (cur_state) {
 case 0:
 switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("rejected\n"); return 0;
 default: printf("rejected\n"); return 0;
 }
 break;
 case 1:
 switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("accepted\n"); return 1;
 default: printf("rejected\n"); return 0;
 }
 break;
 default: printf("unknown state; I'm confused\n"); break;
 }
}

It's easy to build a program which mimics a DFA.
Implementing DFAs (generic)

More generally, use generic table-driven DFA

given components \((\Sigma, Q, q_0, F, \delta)\) of a DFA:

\[
\begin{align*}
\text{let } q &= q_0 \\
\text{while (there exists another symbol } \sigma \text{ of the input string)} &
\begin{align*}
q &:= \delta(q, \sigma) \\
\text{if } q \in F \text{ then } &\quad \text{accept} \\
\text{else } &\quad \text{reject}
\end{align*}
\end{align*}
\]

• \(q\) is just an integer
• Represent \(\delta\) using arrays or hash tables
• Represent \(F\) as a set
An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where

- \(\Sigma, Q, q_0, F\) as with DFAs
- \(\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q\) specifies the NFA's transitions

Example

- \(\Sigma = \{a\}\)
- \(Q = \{S1, S2, S3\}\)
- \(q_0 = S1\)
- \(F = \{S3\}\)
- \(\delta = \{(S1,a,S1), (S1,a,S2), (S2,\epsilon,S3)\}\)

An NFA accepts \(s\) if there is at least one path via \(s\) from the NFA's start state to a final state.
NFA Acceptance Algorithm (Sketch)

- When NFA processes a string s
 - NFA must keep track of several “current states”
 - Due to multiple transitions with same label, and ε-transitions
 - If any current state is final when done then accept s

- Example
 - After processing “a”
 - NFA may be in states $S1$, $S2$, $S3$
 - Since $S3$ is final, s is accepted

- Algorithm is slow, space-inefficient; prefer DFAs!
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages! *Can convert between them*

NB. Both *transform* and *reduce* are historical terms; they mean “convert”
Goal: Given regular expression A, construct NFA: $<A> = (\Sigma, Q, q_0, F, \delta)$

- Remember regular expressions are defined recursively from primitive RE languages
- Invariant: $|F| = 1$ in our NFAs
 - Recall $F = \text{set of final states}$

Will define $<A>$ for base cases: $\sigma, \varepsilon, \emptyset$
- Where σ is a symbol in Σ

And for inductive cases: $AB, A|B, A^*$
Reducing Regular Expressions to NFAs

Base case: σ

$<\sigma> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})$
Reduction

- Base case: ε

$\langle \varepsilon \rangle = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$

- Base case: \emptyset

$\langle \emptyset \rangle = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$
Reduction: Concatenation

Induction: AB

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Concatenation

Induction: \(AB \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)\)
- \(= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)\)
- \(<AB> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \epsilon, q_B)\})\)
Reduction: Union

Induction: $A|B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Union

Induction: $A|B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $<A|B> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0, S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0, \varepsilon, q_A), (S0, \varepsilon, q_B), (f_A, \varepsilon, S1), (f_B, \varepsilon, S1)\})$
Reduction: Closure

Induction: A^*

• $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
Reduction: Closure

- Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\},$
 $\delta_A \cup \{(f_A,\varepsilon,S1), (S0,\varepsilon,q_A), (S0,\varepsilon,S1), (S1,\varepsilon,S0)\})$
Quiz 2: Which NFA matches a^*?

A.

B.

C.

D.

CMSC 330 Spring 2020
Quiz 2: Which NFA matches a^*?

A.

B.

C.

D.
Quiz 3: Which NFA matches $a|b^*$?
Quiz 3: Which NFA matches $a|b^*$?
RE \rightarrow NFA

Draw NFAs for the regular expression $(0|1)^*110^*$
Reduction Complexity

- Given a regular expression \(A \) of size \(n \)...
 \[\text{Size} = \# \text{ of symbols} + \# \text{ of operations} \]

- How many states does \(<A>\) have?
 - Two added for each |, two added for each *
 - \(O(n) \)
 - That’s pretty good!
Reducing NFA to DFA

can reduce

DFA ← NFA

can reduce

RE
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA “current states”

- Example
Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - Input
 - NFA (Σ, Q, q_0, F_n, δ)
 - Output
 - DFA (Σ, R, r_0, F_d, δ)
 - Using two subroutines
 - ε-closure(δ, p) (and ε-closure(δ, Q))
 - move(δ, p, σ) (and move(δ, Q, σ))
 - (where p is an NFA state)
\(\varepsilon \)-transitions and \(\varepsilon \)-closure

- We say \(p \xrightarrow{\varepsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only \(\varepsilon \)-transitions in \(\delta \)
 - If \(\exists p, p_1, p_2, \ldots p_n, q \in Q \) such that
 - \(\{p, \varepsilon, p_1\} \in \delta \), \(\{p_1, \varepsilon, p_2\} \in \delta \), \(\ldots \), \(\{p_n, \varepsilon, q\} \in \delta \)

- \(\varepsilon \)-closure(\(\delta \), \(p \))
 - Set of states reachable from \(p \) using \(\varepsilon \)-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{\varepsilon} q \) according to \(\delta \)
 - \(\varepsilon \)-closure(\(\delta \), \(p \)) = \{ \(q \mid p \xrightarrow{\varepsilon} q \) in \(\delta \) \}
 - \(\varepsilon \)-closure(\(\delta \), \(Q \)) = \{ \(q \mid p \in Q, p \xrightarrow{\varepsilon} q \) in \(\delta \) \}
 - Notes
 - \(\varepsilon \)-closure(\(\delta \), \(p \)) always includes \(p \)
 - We write \(\varepsilon \)-closure(\(p \)) or \(\varepsilon \)-closure(\(Q \)) when \(\delta \) is clear from context
ε-closure: Example 1

- Following NFA contains
 1. \(p_1 \xrightarrow{\varepsilon} p_2 \)
 2. \(p_2 \xrightarrow{\varepsilon} p_3 \)
 3. \(p_1 \xrightarrow{\varepsilon} p_3 \)

 ➤ Since \(p_1 \xrightarrow{\varepsilon} p_2 \) and \(p_2 \xrightarrow{\varepsilon} p_3 \)

- ε-closures
 1. \(\varepsilon\text{-closure}(p_1) = \{ p_1, p_2, p_3 \} \)
 2. \(\varepsilon\text{-closure}(p_2) = \{ p_2, p_3 \} \)
 3. \(\varepsilon\text{-closure}(p_3) = \{ p_3 \} \)
 4. \(\varepsilon\text{-closure}(\{ p_1, p_2 \}) = \{ p_1, p_2, p_3 \} \cup \{ p_2, p_3 \} \)
ε-closure: Example 2

- Following NFA contains
 - p1 → p3
 - p3 → p2
 - p1 → p2
 - Since p1 → p3 and p3 → p2

- ε-closures
 - ε-closure(p1) = \{ p1, p2, p3 \}
 - ε-closure(p2) = \{ p2 \}
 - ε-closure(p3) = \{ p2, p3 \}
 - ε-closure({ p2, p3 }) = \{ p2 \} \cup \{ p2, p3 \}
ε-closure Algorithm: Approach

- **Input:** NFA \((\Sigma, Q, q_0, F_n, \delta)\), State Set \(R\)
- **Output:** State Set \(R'\)
- **Algorithm**

 Let \(R' = R\)

 Repeat

 Let \(R = R'\)

 Let \(R' = R \cup \{q \mid p \in R, (p, \varepsilon, q) \in \delta\}\)

 Until \(R = R'\)

This algorithm computes a **fixed point**
ε-closure Algorithm Example

Calculate ε-closure($\delta, \{p1\}$)

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>${p1}$</td>
<td>${p1}$</td>
</tr>
<tr>
<td>${p1}$</td>
<td>${p1, p2}$</td>
</tr>
<tr>
<td>${p1, p2}$</td>
<td>${p1, p2, p3}$</td>
</tr>
<tr>
<td>${p1, p2, p3}$</td>
<td>${p1, p2, p3}$</td>
</tr>
</tbody>
</table>

Let $R' = R$
Repeat
 Let $R = R'$
 Let $R' = R \cup \{q \mid p \in R, (p, \varepsilon, q) \in \delta\}$
Until $R = R'$
Calculating $\text{move}(p, \sigma)$

- $\text{move}(\delta, p, \sigma)$

 - Set of states reachable from p using exactly one transition on symbol σ

 - Set of states q such that $\{p, \sigma, q\} \in \delta$

 - $\text{move}(\delta, p, \sigma) = \{ q \mid \{p, \sigma, q\} \in \delta \}$

 - $\text{move}(\delta, Q, \sigma) = \{ q \mid p \in Q, \{p, \sigma, q\} \in \delta \}$

 - i.e., can “lift” $\text{move}()$ to a set of states Q

- Notes:

 - $\text{move}(\delta, p, \sigma)$ is \emptyset if no transition $(p, \sigma, q) \in \delta$, for any q

 - We write $\text{move}(p, \sigma)$ or $\text{move}(R, \sigma)$ when δ clear from context
move(p, σ) : Example 1

- Following NFA
 - \(\Sigma = \{ a, b \} \)

- Move
 - \(\text{move}(p_1, a) = \{ p_2, p_3 \} \)
 - \(\text{move}(p_1, b) = \emptyset \)
 - \(\text{move}(p_2, a) = \emptyset \)
 - \(\text{move}(p_2, b) = \{ p_3 \} \)
 - \(\text{move}(p_3, a) = \emptyset \)
 - \(\text{move}(p_3, b) = \emptyset \)

\(\text{move}(\{p_1, p_2\}, b) = \{ p_3 \} \)
move(p, σ) : Example 2

- Following NFA
 - $\Sigma = \{ a, b \}$

- Move
 - $\text{move}(p_1, a) = \{ p_2 \}$
 - $\text{move}(p_1, b) = \{ p_3 \}$
 - $\text{move}(p_2, a) = \{ p_3 \}$
 - $\text{move}(p_2, b) = \emptyset$
 - $\text{move}(p_3, a) = \emptyset$
 - $\text{move}(p_3, b) = \emptyset$
 - $\text{move}(\{p_1, p_2\}, a) = \{p_2, p_3\}$
NFA → DFA Reduction Algorithm ("subset")

- Input NFA (Σ, Q, q₀, Fₙ, δ), Output DFA (Σ, R, r₀, Fₚ, δ’)
- Algorithm

 Let r₀ = ε-closure(δ, q₀), add it to R // DFA start state

 While ∃ an unmarked state r ∈ R // process DFA state r
 Mark r // each state visited once
 For each σ ∈ Σ // for each symbol σ
 Let E = move(δ, r, σ) // states reached via σ
 Let e = ε-closure(δ, E) // states reached via ε
 If e ∉ R // if state e is new
 Let R = R ∪ {e} // add e to R (unmarked)
 Let δ’ = δ’ ∪ {r, σ, e} // add transition r→e on σ
 Let Fₚ = {r | ∃ s ∈ r with s ∈ Fₙ} // final if include state in Fₙ
NFA → DFA Example 1

• Start = ε-closure(δ,p1) = \{ p1,p3 \}
• R = \{ p1,p3 \}
• r \in R = \{ p1,p3 \}
• move(δ,{p1,p3},a) = \{ p2 \}
 ➢ e = ε-closure(δ,\{p2\}) = \{ p2 \}
 ➢ R = R \cup \{p2\} = \{ p1,p3, \{ p2 \} \}
 ➢ δ' = δ' \cup \{p1,p3, a, \{ p2 \} \}
• move(\delta,\{p1,p3\},b) = \emptyset

![Diagram of NFA and DFA](image)
NFA → DFA Example 1 (cont.)

- $R = \{ \{p1,p3\}, \{p2\} \}$
- $r \in R = \{p2\}$
- $\text{move}(\delta, \{p2\}, a) = \emptyset$
- $\text{move}(\delta, \{p2\}, b) = \{p3\}$
 - $e = \varepsilon$-closure$(\delta, \{p3\}) = \{p3\}$
 - $R = R \cup \{\{p3\}\} = \{\{p1,p3\}, \{p2\}, \{p3\}\}$
 - $\delta' = \delta' \cup \{\{p2\}, b, \{p3\}\}$

![NFA Diagram]

![DFA Diagram]
NFA → DFA Example 1 (cont.)

• \(R = \{ \{p1,p3\}, \{p2\}, \{p3\} \} \)
• \(r \in R = \{p3\} \)
• \(\text{Move(\{p3\},a)} = \emptyset \)
• \(\text{Move(\{p3\},b)} = \emptyset \)
• \(\text{Mark \{p3\}, exit loop} \)
• \(F_d = \{\{p1,p3\}, \{p3\}\} \)
 ➢ Since \(p3 \in F_n \)
• Done!
NFA \rightarrow DFA Example 2

- **NFA**

- **DFA**

$$ R = \{ \{A\}, \{B,D\}, \{C,D\} \} $$
Quiz 4: Which DFA is equivalent to this NFA?

NFA:

A.

B.

C.

D. None of the above
Quiz 4: Which DFA is equivalent to this NFA?

NFA:

A.

B.

C.

D. None of the above
Actual Answer

NFA:
NFA → DFA Example 3

R = \{ {A, E}, {B, D, E}, {C, D}, {E} \}
NFA → DFA Example
NFA → DFA Practice
NFA → DFA Practice
Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with \(n \) states, DFA may have \(2^n \) states
 - Since a set with \(n \) items may have \(2^n \) subsets
 - Corollary
 - Reducing a NFA with \(n \) states may be \(O(2^n) \)
Recap: Matching a Regexp R

- Given R, construct NFA. Takes time $O(R)$
- Convert NFA to DFA. Takes time $O(2^{|R|})$
 - But usually not the worst case in practice
- Use DFA to accept/reject string s
 - Assume we can compute $\delta(q,\sigma)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!
- Constructing the DFA is a one-time cost
 - But then processing strings is fast
Closing the Loop: Reducing DFA to RE

DFA

NFA

can transform

can reduce

can transform

RE
Reducing DFAs to REs

- **General idea**
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA
Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states

- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
Minimizing DFA: Hopcroft Reduction

Intuition

- Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input

Algorithm

- Construct initial partition
 - Accepting & non-accepting states
- Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states \(x, y \) belong in same partition if and only if for all symbols in \(\Sigma \) they transition to the same partition
- Update transitions & remove dead states
No need to split partition \{S,T,U,V\}

- All transitions on a lead to identical partition P2
- Even though transitions on a lead to different states
Splitting Partitions (cont.)

- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on \(a\) from \(S,T\) lead to partition \(P_2\)
 - Transition on \(a\) from \(U\) lead to partition \(P_3\)
Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S,T,U\}
 - After splitting partition \{X,Y\} into \{X\}, \{Y\} we need to split partition \{S,T,U\} into \{S,T\}, \{U\}
Minimizing DFA: Example 1

- DFA

- Initial partitions

- Split partition
Minimizing DFA: Example 1

DFA

Initial partitions
• Accept \{ R \} = P1
• Reject \{ S, T \} = P2

Split partition? → Not required, minimization done
• move(S,a) = T ∈ P2
• move(T,a) = T ∈ P2
• move(S,b) = R ∈ P1
• move(T,b) = R ∈ P1
Minimizing DFA: Example 2
Minimizing DFA: Example 2

- **DFA**

- **Initial partitions**
 - Accept \{ R \} = P1
 - Reject \{ S, T \} = P2

- **Split partition? → Yes, different partitions for B**
 - move(S,a) = T ∈ P2 – move(S,b) = T ∈ P2
 - move(T,a) = T ∈ P2 – move(T,b) = R ∈ P1

DFA already minimal
Complement of DFA

Given a DFA accepting language \(L \)

- How can we create a DFA accepting its complement?
- Example DFA
 - \(\Sigma = \{a, b\} \)
Complement of DFA

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

- Note this only works with DFAs
 - Why not with NFAs?
Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - RE → NFA
 - Concatenation, union, closure
 - NFA → DFA
 - ε-closure & subset algorithm

- DFA
 - Minimization, complementation