
CMSC 351

Introduction to Algorithms

Spring 2020



Administration

General Administration:
Andrew Witten <awitten1@terpmail.umd.edu>

Exam Scheduling:
Jamie Matthews <jamiem@cs.umd.edu>



Administration (continued)
Webpage

I Get homework assignments
I Syllabus
I Other documents

Piazza
I Ask questions

F Do not post solutions.
F Do not ask if your answer or approach is correct.

I Discuss issues
I Public versus Private

ELMS
I Get homework solutions
I See final grades

Gradescope
I Hand in homework
I See graded homeworks and exams



Administration (continued)

Textbook (bookstore/on reserve at McKeldin Library)
I Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms (3rd

ed., 2009). MIT Press. (Any edition is fine.)

Class attendance
I You are responsible for what is said in class.
I Laptops and other devices: Do not share during class.
I Lectures will be posted (mostly).

Office hours

Exams
I Two evening midterms: 6:00-8:00pm.

F Wednesday, March 11
F Tuesday, April 21

I Final exam: 4:00-6:00pm.
F Saturday, May 16th



Administration (continued)

Homework
I Three types

F Regular: typically due each Friday. (1% each)
F NP-completeness: typically due every other Wednesday. (1/2% each)
F Programming project (maybe). (4%)

I Must be in PDF.
I Must be easy to read (your responsibility).
I Late date: 25% off your actual grade.

F One get-out-of-jail-free card for each type.

I Your neighbor should understand your answers.
I Study groups. (Teach it.)
I Must write up homework solutions yourself.

F State who is in your study group at top of homework.
F State what outside resources you used to solve each problem.

I Do problems from book (and other books).

Grading



Topics (tentative)
Introduction, Ch. 1,2

Quadratic sorting algorithms

Mergesort, Ch. 2

Summations, Appendix A

Recurrences, Ch. 4

Heapsort, Ch. 6

Quicksort, Ch. 7

Sorting in Linear Time, Ch. 8

Medians and Order Statistics, Ch. 9

Graphs and Trees, Appendix B

Minimum Spanning Trees, Ch. 23

Shortest Paths: Dijkstra’s algorithm, Ch. 24.3

Introduction to NP-completeness, Ch. 34



Why learn this material?

Algorithms are everywhere in Computer Science (and
elsewhere).

Useful for later courses.

Useful for computer programming.
“Micro-algorithms”

Useful to get a job.

Useful on the job.



Why learn this material?

Algorithms are everywhere in Computer Science (and
elsewhere).

Useful for later courses.

Useful for computer programming.
“Micro-algorithms”

Useful to get a job.

Useful on the job.



Why learn this material?

Algorithms are everywhere in Computer Science (and
elsewhere).

Useful for later courses.

Useful for computer programming.
“Micro-algorithms”

Useful to get a job.

Useful on the job.



Why learn this material?

Algorithms are everywhere in Computer Science (and
elsewhere).

Useful for later courses.

Useful for computer programming.
“Micro-algorithms”

Useful to get a job.

Useful on the job.



Why learn this material?

Algorithms are everywhere in Computer Science (and
elsewhere).

Useful for later courses.

Useful for computer programming.
“Micro-algorithms”

Useful to get a job.

Useful on the job.



Why learn this material?

Algorithms are everywhere in Computer Science (and
elsewhere).

Useful for later courses.

Useful for computer programming.
“Micro-algorithms”

Useful to get a job.

Useful on the job.



What is an algorithm?

Definition

An algorithm is a finite list of step-by-step instructions for
solving a problem.

Efficiency

Time

Space

Example

Tournament assignment. (Think about at home.)



Good Algorithms Are Critical

Example

Two sorting algorithms:

Slow algorithm (bubble sort): 4n2 instructions

Fast algorithm (merge sort): 80n lg n instructions

Two computers:

Fast computer: 10 billion instructions/second

Slow computer: 10 million instructions/second

Time to sort 10 million numbers:

Slow algorithm, fast computer: ≈ 11 hours

Fast algorithm, slow computer: ≈ 1
2 hour



Good Algorithms Are Critical

Example

Two sorting algorithms:

Slow algorithm (bubble sort): 4n2 instructions

Fast algorithm (merge sort): 80n lg n instructions

Two computers:

Fast computer: 10 billion instructions/second

Slow computer: 10 million instructions/second

Time to sort 10 million numbers:

Slow algorithm, fast computer: ≈ 11 hours

Fast algorithm, slow computer: ≈ 1
2 hour



Good Algorithms Are Critical

Example

Two sorting algorithms:

Slow algorithm (bubble sort): 4n2 instructions

Fast algorithm (merge sort): 80n lg n instructions

Two computers:

Fast computer: 10 billion instructions/second

Slow computer: 10 million instructions/second

Time to sort 10 million numbers:

Slow algorithm, fast computer: ≈ 11 hours

Fast algorithm, slow computer: ≈ 1
2 hour



Calculate Time

Example

Slow algorithm, fast computer:

4 ·
(
107

)2
instructions

1010 instructions/second
= 40000 secs ≈ 11 hrs

Fast algorithm, slow computer:

80 · 107 lg
(
107

)
instructions

107 instructions/second
≈ 1860 secs ≈ 31 mins



Calculate Time

Example

Other way around:

Slow algorithm, slow computer: ≈ 11
4 years

Fast algorithm, fast computer: ≈ 2 seconds

Both using fast computer:

Slow algorithm, fast computer: ≈ 11 hours

Fast algorithm, fast computer: ≈ 2 seconds



Calculate Time

Example

Other way around:

Slow algorithm, slow computer: ≈ 11
4 years

Fast algorithm, fast computer: ≈ 2 seconds

Both using fast computer:

Slow algorithm, fast computer: ≈ 11 hours

Fast algorithm, fast computer: ≈ 2 seconds



Calculate Time

Example

Other way around:

Slow algorithm, slow computer: ≈ 11
4 years

Fast algorithm, fast computer: ≈ 2 seconds

Both using fast computer:

Slow algorithm, fast computer: ≈ 11 hours

Fast algorithm, fast computer: ≈ 2 seconds



Calculate Time

Example

Other way around:

Slow algorithm, slow computer: ≈ 11
4 years

Fast algorithm, fast computer: ≈ 2 seconds

Both using fast computer:

Slow algorithm, fast computer: ≈ 11 hours

Fast algorithm, fast computer: ≈ 2 seconds


	Title
	Introduction

