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What is Learning?

* |s memorization a form of “learning”?

* One definition: Learning is the process of
obtaining expertise from experience

* Our goal: learning “Machine Learning”



What is this course about?

 Machine learning studies algorithms for
learning to perform certain tasks

* By finding and exploiting patterns in data



Machine Learning

e Paradigm: “Programming by example”

— Replace “human writing code" with ""human supplying
data"

* Most central issue: generalization

— How to abstract from training' examples to "test"
examples?



What can we do

with machine learning?
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Sometimes machines even
perform better than humans!
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Question Answering
system beats Jeopardy
champion Ken Jennings at
Quiz bowl!



Why Machine Learning?

* A growing and fast moving field with broad
applicability: Finance, robotics, vision,
machine translation, medicine, etc.

* Close connection between theory and practice

* Open field, lots of room for new work!



Course Goals

* By the end of the semester, you should be able to
— Look at a problem
— ldentify if ML is an appropriate solution
— If so, identify what types of algorithms might be applicable
— Apply those algorithms

* This course is not
— A survey of ML algorithms
— A tutorial on ML toolkits such as Weka, TensorFlow, ...



Prerequisites

MATH461: Linear Algebra for Scientists and
Engineers

MATH?240: Introduction to Linear Algebra
CMSC351: Introduction to Algorithms

CMSC330: Organization of Programming
Languages

CMSC320: Introduction to Data Science



What you can expect
from the instructors

3 Teaching Assistants We are here to help you learn by
. — Introducing concepts from multiple

e Amir Nili i

- Neha Mukund Kalibhat PErspectives

« Nitin Balachandran * Theory and practice

e Readings and class time

— Providing opportunities to practice,
and feedback to help you stay on track
* Homeworks

* Programming assignments
e Office hours



What | expect from you

 Work hard (this is a 3-credit class!)
— Do a lot of math (calculus, linear algebra, probability)

— Do a fair amount of programming

e Come to class prepared

— Do the required readings!



Highlights from course logistics

Grading

Homework and Programming
assignments (30%)

Final project (10%)
Midterm exam (25%), in class
on March 5

Final exam (35%), cumulative,
in class.

HWO1 is due Feb 4th
11:59 pm

No late homeworks

Read syllabus on course
webpage



Where to...

find the schedule and slides: Course webpage

find the readings: A Course in Machine Learning

view and submit assignments: Canvas

check your grades: Canvas

ask and answer questions, participate in discussions
and surveys, contact the instructors, and everything
else:

— Piazza Please use piazza instead of email

— Office hours


http://www.cs.umd.edu/class/spring2019/cmsc422-0101
http://ciml.info/
https://myelms.umd.edu/
https://myelms.umd.edu/

Data

Data comes in different formats:

(1) , (1) (N) (V) } Training
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features target/label
variable

Goal: predict the label/target using features

I:> Supervised Learning



Example

(), yV)

j‘> Regression
Problem

sing Prices

Square Feet

Q1. What is the dimension of the feature var? one ) c R

Q2. What is the dimension of the target var? one y(i) c R



Example
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Q1. What is the dimension of the feature var? two (%) c R?

Q2. What is the dimension of the target var? one ¥ ¢ {0, 1}



Data

Data comes in different formats:

(1) .(1) (N) Training
{xf N AR } —> ot

features

Goal: find “interesting” patterns in data

I:> Unsupervised Learning



Example

» Clustering
Problem

Expression



Who are these people?




Generative Models (GANSs)

Generating realistic but fake samples

CelebA dataset
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Karras et al. 2017



Dimensionality Reduction

meta
features features

dimensionally |
reduction

samples




http://www.7wdata.be/big-data/10-companies-using-machine-learning-in-cool-ways/
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A Closer Look:
the classification problem

What does it mean to “learn by example”?
e Classification tasks
* Inductive bias

* Formalizing learning



Classification tasks

* How would you write a program to distinguish
a picture of a cat from a picture of a dog?

* Provide examples pictures of cats and pictures
of dogs and let a classifier learn to distinguish

the two.



Classification tasks

* How would you write a program to distinguish
a sentence is grammatical or not?

* Provide examples of grammatical and
ungrammatical sentences and let a classifier
learn to distinguish the two.



Classification tasks

* How would you write a program to distinguish
cancerous cells from normal cells?

* Provide examples of cancerous and normal
cells and let a classifier learn to distinguish the

two.



Let’s try it out...

" Your task: learn a classifier to distinguish class
A from class B from examples



* Examples of class A:




 Examples of class B




Let’s try it out...

v’ learn a classifier from examples

= Now: predict class on new examples using
what you’ve learned















Key ingredients
needed for learning

* Training vs. test examples

— Memorizing the training examples is not enough!

— Need to generalize to make good predictions on test
examples

 |nductive bias

— Many classifier hypotheses are plausible

— Need assumptions about the nature of the relation
between examples and classes



Machine Learning
as Function Approximation

Problem setting

e Set of possible instances X

* Unknown target function f: X - Y

* Set of function hypotheses H = {h | h: X — Y}

Input

» Training examples {(x(Y),yD), .. (xV), y (M)} of unknown target
function f

Output
* Hypothesis h € H that best approximates target function f



Formalizing induction:
Loss Function

[(y, h(x)) where y is the truth and h(x) is the system’s
prediction

e.g. l(y,h(x)) = {O if y = h(x)

1 otherwise

Captures our notion of what is important to learn



Formalizing induction:
Data generating distribution

e Where does the data come from?

— Data generating distribution
* A probability distribution D over (x, y) pairs

— We don’t know what D is!

* We only get a sample from it: our training data



Formalizing induction:
Expected loss

* h should make good predictions
— as measured by loss [
— on future examples that are also drawn from D

* Formally

— &, the expected loss of h over D should be small

£ 2 By p{l0Lh()} = ) Deo I, h()

(x,y)



Formalizing induction:
Training error

 We can’t compute expected loss because we don’t
know what D is

 We only have a sample of D
— training examples {(x(l),y(l)), (x(N),y(N))}

* All we can compute is the training error

N
1
g2y SIY®, h(x™M))
n=1



Formalizing Induction

e (Given
— a loss function [

— a sample from some unknown data distribution D

e Our task is to compute a function h that has low
expected error over D with respect to [.

Byl hGD} = ) D06y, h(x))

(x,y)



Recap: introducing
machine learning

What does “learning by example” mean?
e Classification tasks

* Learning requires examples + inductive bias

* Generalization vs. memorization

* Formalizing the learning problem
— Function approximation
— Learning as minimizing expected loss



Your tasks before next class

* Check out course webpage, Canvas, Piazza

e Start reading the reviews on probability and
linear algebra (posted on course webpage)

e Get started on HWO01



