The Perceptron

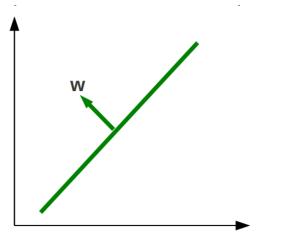
CMSC 422 SOHEIL FEIZI <u>sfeizi@cs.umd.edu</u>

Slides adapted from MARINE CARPUAT

This week

- A new model/algorithm
 - the perceptron
 - and its variants: voted, averaged
- Fundamental Machine Learning Concepts
 - Online vs. batch learning
 - Error-driven learning

Geometry concept: Hyperplane



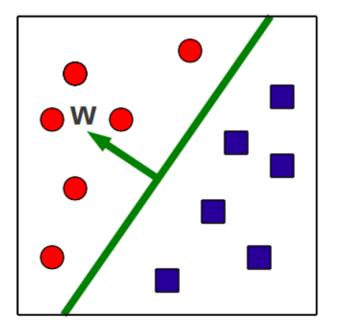
- Separates a D-dimensional space into two half-spaces
- Defined by an outward pointing normal vector $w \in \mathbb{R}^D$
 - *w* is **orthogonal** to any vector
 lying on the hyperplane
- Hyperplane passes through the origin, unless we also define a bias term b

Binary classification via hyperplanes



- Let's assume that the decision boundary is a hyperplane
- Then, training consists in finding a hyperplane w that separates positive from negative examples

Binary classification via hyperplanes



 At test time, we check on what side of the hyperplane examples fall

$$\hat{y} = sign(w^T x + b)$$

Function Approximation with Perceptron

Problem setting

- Set of possible instances X
 - Each instance $x \in X$ is a feature vector $x = [x_1, ..., x_D]$
- Unknown target function $f: X \rightarrow Y$
 - Y is binary valued {-1; +1}
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$
 - Each hypothesis h is a hyperplane in D-dimensional space

Input

• Training examples { ($x^{(1)}, y^{(1)}$), ... ($x^{(N)}, y^{(N)}$) } of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

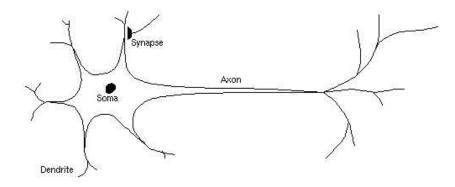
Perception: Prediction Algorithm

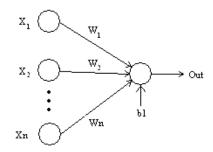
Algorithm 6 PERCEPTRONTEST $(w_0, w_1, \ldots, w_D, b, \hat{x})$

 $a \leftarrow \sum_{d=1}^{D} w_d \hat{x}_d + b$ 2: return sign(a)

// compute activation for the test example

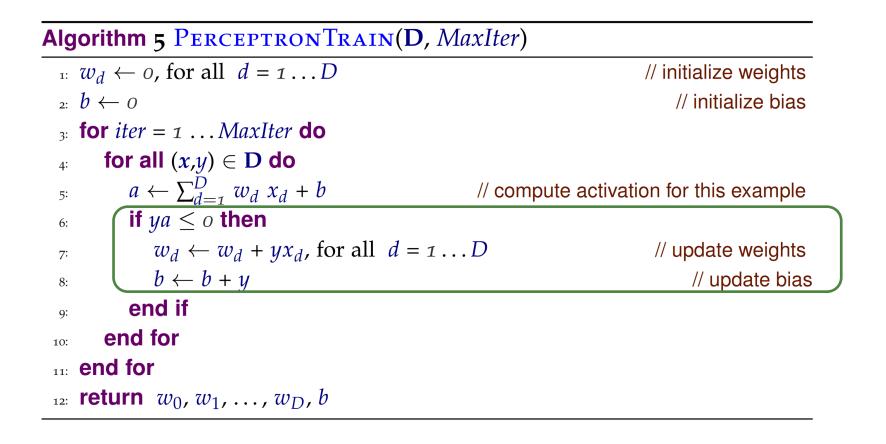
Aside: biological inspiration





Analogy: the perceptron as a neuron

Perceptron Training Algorithm

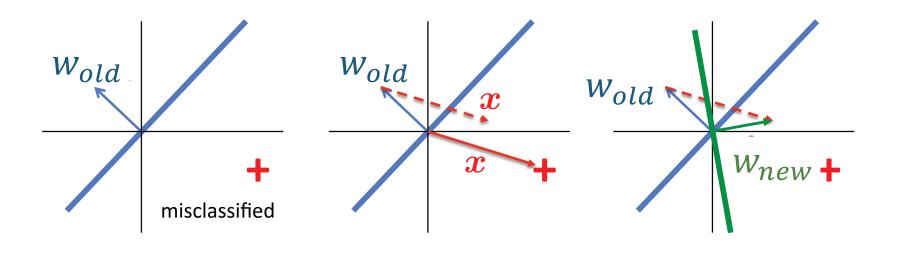


Properties of the Perceptron training algorithm

Online

- We look at one example at a time, and update the model as soon as we make an error
- As opposed to batch algorithms that update parameters after seeing the entire training set
- Error-driven
 - We only update parameters/model if we make an error

Perceptron update: geometric interpretation



Practical considerations

- The order of training examples matters!
 Random is better
- Early stopping
 - Good strategy to avoid overfitting
- Simple modifications dramatically improve performance
 - voting or averaging

Standard Perceptron: predict based on final parameters

Algorithm 5 PERCEPTRONTRAIN(**D**, *MaxIter*) 1: $w_d \leftarrow o$, for all $d = 1 \dots D$ // initialize weights 2: $b \leftarrow 0$ // initialize bias $_{3:}$ for *iter* = 1 ... *MaxIter* do for all $(x,y) \in \mathbf{D}$ do 4: $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$ // compute activation for this example 5: if $ya \leq o$ then 6: $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$ // update weights 7: $b \leftarrow b + y$ // update bias 8: end if 9: end for 10: TT: end for ^{12:} **return** w_0, w_1, \ldots, w_D, b

Predict based on final + intermediate parameters

• The voted perceptron

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)}\operatorname{sign}\left(\boldsymbol{w}^{(k)}\cdot\hat{\boldsymbol{x}} + b^{(k)}\right)\right)$$

• The averaged perceptron

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(\mathsf{k})} \left(\boldsymbol{w}^{(\mathsf{k})} \cdot \hat{\boldsymbol{x}} + b^{(\mathsf{k})}\right)\right)$$

 Require keeping track of "survival time" of weight vectors c⁽¹⁾,...,c^(K)

Averaged perceptron decision rule

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \left(\boldsymbol{w}^{(k)} \cdot \hat{\boldsymbol{x}} + b^{(k)} \right) \right)$$

can be rewritten as

$$\hat{y} = \operatorname{sign}\left(\left(\sum_{k=1}^{K} c^{(k)} \boldsymbol{w}^{(k)}\right) \cdot \hat{\boldsymbol{x}} + \sum_{k=1}^{K} c^{(k)} \boldsymbol{b}^{(k)}\right)$$

Can the perceptron always find a hyperplane to separate positive from negative examples?

Convergence of Perceptron

- The perceptron has converged if it can classify every training example correctly
 - i.e. if it has found a hyperplane that correctly separates positive and negative examples
- Under which conditions does the perceptron converge and how long does it take?

Convergence of Perceptron

Theorem (Block & Novikoff, 1962)

If the training data $D = \{(x_1, y_1), ..., (x_N, y_N)\}$ is **linearly separable** with margin γ by a unit norm hyperplane w_* ($||w_*||=1$) with b = 0,

Then perceptron training converges after $\frac{R^2}{\gamma^2}$ errors during training (assuming (||*x*|| < *R*) for all *x*).

Margin of a data set **D**

$$margin(\mathbf{D}, w, b) = \begin{cases} \min_{(x,y)\in\mathbf{D}} y(w \cdot x + b) & \text{if } w \text{ separates } \mathbf{D} \\ -\infty & \text{otherwise} \end{cases}$$
(4.8)
Distance between the hyperplane (w,b) and the nearest point in **D**

(4.9)

$$margin(\mathbf{D}) = \sup_{w,b} margin(\mathbf{D}, w, b)$$

Largest attainable
margin on **D**

Theorem (Block & Novikoff, 1962)

If the training data $D = \{(x_1, y_1), ..., (x_N, y_N)\}$ is **linearly** separable with margin γ by a unit norm hyperplane w_* ($||w_*||=1$) with b = 0, then perceptron training converges after $\frac{R^2}{\gamma^2}$ errors during training (assuming (||x|| < R) for all x).

Proof:

- Margin of \mathbf{w}_* on any arbitrary example (\mathbf{x}_n, y_n) : $\frac{y_n \mathbf{w}_*^T \mathbf{x}_n}{||\mathbf{w}_*||} = y_n \mathbf{w}_*^T \mathbf{x}_n \ge \gamma$
- Consider the $(k+1)^{th}$ mistake: $y_n \mathbf{w}_k^T \mathbf{x}_n \leq 0$, and update $\mathbf{w}_{k+1} = \mathbf{w}_k + y_n \mathbf{x}_n$
- $\mathbf{w}_{k+1}^T \mathbf{w}_* = \mathbf{w}_k^T \mathbf{w}_* + y_n \mathbf{w}_*^T \mathbf{x}_n \ge \mathbf{w}_k^T \mathbf{w}_* + \gamma$ (why is this nice?)
- Repeating iteratively k times, we get $\mathbf{w}_{k+1}^T \mathbf{w}_* > k\gamma$ (1)
- $||\mathbf{w}_{k+1}||^2 = ||\mathbf{w}_k||^2 + 2y_n \mathbf{w}_k^T \mathbf{x}_n + ||\mathbf{x}||^2 \le ||\mathbf{w}_k||^2 + R^2 \text{ (since } y_n \mathbf{w}_k^T \mathbf{x}_n \le 0 \text{)}$
- Repeating iteratively k times, we get $||\mathbf{w}_{k+1}||^2 \le kR^2$ (2)

Theorem (Block & Novikoff, 1962)

If the training data $D = \{(x_1, y_1), ..., (x_N, y_N)\}$ is **linearly** separable with margin γ by a unit norm hyperplane w_* ($||w_*||=1$) with b = 0, then perceptron training converges after $\frac{R^2}{\gamma^2}$ errors during training (assuming (||x|| < R) for all x).

What does this mean?

- Perceptron converges quickly when margin is large, slowly when it is small
- Bound does not depend on number of training examples N, nor on number of features
- Proof guarantees that perceptron converges, but not necessarily to the max margin separator

Practical Implications

- Sensitivity to noise
 - if the data is not linearly separable due to noise, no guarantee of convergence or accuracy
- Linear separability in practice
 - Data may be linearly separable in practice
 - Especially when number of features >> number of examples
- Risk of overfitting mitigated by
 - Early stopping
 - Averaging

What you should know

- Perceptron concepts
 - training/prediction algorithms (standard, voting, averaged)
 - convergence theorem and what practical guarantees it gives us
 - how to draw/describe the decision boundary of a perceptron classifier
- Fundamental ML concepts
 - Determine whether a data set is linearly separable and define its margin
 - Error driven algorithms, online vs. batch algorithms

This week

- A new model/algorithm
 - the perceptron
 - and its variants: voted, averaged
- Fundamental Machine Learning Concepts
 - Online vs. batch learning
 - Error-driven learning
- HW3 coming soon!