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This week

* A new model/algorithm
— the perceptron

— and its variants: voted, averaged

* Fundamental Machine Learning Concepts
— Online vs. batch learning

— Error-driven learning



Geometry concept: Hyperplane

e Separates a D-dimensional
space into two half-spaces

. * Defined by an outward pointing
N normal vector w € RP

— w is orthogonal to any vector
lying on the hyperplane

* Hyperplane passes through the
origin, unless we also define a
bias term b



Binary classification
via hyperplanes

e Let’s assume that the

decision boundary is a
hyperplane

* Then, training consists in
finding a hyperplane w that
separates positive from

negative examples



Binary classification
via hyperplanes

e At test time, we check on
what side of the hyperplane
examples fall

y = sign(w’x + b)




Function Approximation
with Perceptron

Problem setting
e Set of possible instances X

— Eachinstance x € X is a feature vector x = [x4, ..., Xp]
* Unknown target function f: X - Y

— Y is binary valued {-1; +1}
* Set of function hypotheses H = {h | h: X - Y}

— Each hypothesis h is a hyperplane in D-dimensional space

Input

» Training examples {(xV), y(1), .. (x™, y M) of unknown target
function f

Output

* Hypothesis h € H that best approximates target function f



Perception: Prediction Algorithm

Algorithm 6 PERCEPTRONTEST(wg, w1, ..., Wp, b, X)

v 04— Zg): L Wy X5+ Db // compute activation for the test example
» return siGgnN(a)




Aside: biological inspiration

Analogy: the
perceptron
as a neuron




Perceptron Training Algorithm

Algorithm 5 PERCEPTRONTRAIN(D, MaxlIter)

v wy <o, forall d=1...D // initialize weights
2 b+ o0 // initialize bias
5. for iter = 1 ... MaxIter do

for all (x,y) € D do

+

5: a <— 25)21 Wy Xg + b /I compute activation for this example
6: if ya < o then

7 wy < wy+yxy, forall d=1...D // update weights
s: b+ b+vy // update bias
% end if

o end for

«: end for

= return wgy, wq, ..., wp, b




Properties of the Perceptron
training algorithm

e Online

— We look at one example at a time, and update the
model as soon as we make an error

— As opposed to batch algorithms that update
parameters after seeing the entire training set

* Error-driven

— We only update parameters/model if we make an
error



Perceptron update:
geometric interpretation

misclassified




Practical considerations

* The order of training examples matters!

— Random is better

* Early stopping
— Good strategy to avoid overfitting

* Simple modifications dramatically improve
performance

— voting or averaging



Standard Perceptron: predict based
on final parameters

Algorithm 5 PERCEPTRONTRAIN(D, Maxlter)

v Wy 4o, forall d=1...D // initialize weights
2 b+o // initialize bias
3 foriter = 1 ... MaxIter do

for all (x,y) € D do

4
5 a <— Zfl)zl wy x5+ Db /I compute activation for this example
6 if ya < o then
7 Wy < wy +yxg forall d=1...D // update weights
8 b—b+y // update bias
9 end if

end for
« end for

= return wgy, wy, ..., wp, b




Predict based on final +
intermediate parameters

* The voted perceptron

K
Yy = sign (Z cWsign (w(k) R+ b(k)))

k=1
* The averaged perceptron

K
J = sign (Z ™ (w(k) - X+ b(k)))
k=1

* Require keeping track of “survival time” of

weight vectors ¢ ..., ¢



Averaged perceptron decision rule

K
J = sign (Z ) (w(k) - X+ b(k)))
k=1

can be rewritten as

(£ 500) 21 )



Can the perceptron always find a
hyperplane to separate positive from
negative examples?



Convergence of Perceptron

* The perceptron has converged if it can classify
every training example correctly

—i.e. if it has found a hyperplane that correctly
separates positive and negative examples

* Under which conditions does the perceptron
converge and how long does it take?



Convergence of Perceptron

Theorem (Block & Novikoff, 1962)

If the training data D = {(x4,y1), ..., (xn, Yn)} IS
linearly separable with margin y by a unit norm
hyperplane w, (||w,||=1) with b = 0,

2

Then perceptron training converges after 3—2

errors during training
(assuming (||x||< R) for all x).



Margin of a data set D

margin(D, w, b) — { Miny ,)ep y(w-x+0b) ifw se}?arates D (4.8
—00 otherwise
Distance between the
hyperplane (w,b) and
the nearest pointin D
margin(D) = sup margin(D, w, b) (4.9)

w,b

Largest attainable
margin on D




Theorem (Block & Novikoff, 1962)

If the training data D = {(x{,y4), ..., (xn, Yn)} is linearly

separable with margin y by a unit norm hyperplane

w, (||w.|l= 1) with b = 0,then perceptron training converges
RZ

after 7z errors during training (assuming (||x||< R) for all x).

Proof:
@ Margin of w, on any arbitrary example (Xp, yn): y||\c\,ITT| = y,w[x, >~
@ Consider the (k + 1) mistake: yaW/ x, <0, and update Wi, 1 = wy + y,X,
o W/ W, =w/w, +y,w/x, >w/w, + v (why is this nice?)
@ Repeating iteratively k times, we get wkTHw* > k~y (1)
o [[Wisa]12 = [IWkl 2 + 2w ] %o + [X]12 < [[wiel 2 + R? (since yow]x, < 0)
@ Repeating iteratively k times, we get ||wy1||? < kR? (2)



Theorem (Block & Novikoff, 1962)

If the training data D = {(x{,y4), ..., (xn, Yn)} is linearly
separable with margin y by a unit norm hyperplane

w, (|lw.||= 1) with b = 0,then perceptron training converges
2

after i—z errors during training (assuming (||x||< R) for all x).

/What does this mean? \

 Perceptron converges quickly when margin is large,
slowly when it is small

* Bound does not depend on number of training
examples N, nor on number of features

 Proof guarantees that perceptron converges, but not

K necessarily to the max margin separator /




Practical Implications

* Sensitivity to noise

— if the data is not linearly separable due to noise, no
guarantee of convergence or accuracy

* Linear separability in practice

— Data may be linearly separable in practice

— Especially when number of features >> number of
examples

* Risk of overfitting mitigated by
— Early stopping
— Averaging



What you should know

* Perceptron concepts

— training/prediction algorithms (standard, voting, averaged)

— convergence theorem and what practical guarantees it gives
us

— how to draw/describe the decision boundary of a perceptron
classifier

 Fundamental ML concepts

— Determine whether a data set is linearly separable and define
its margin

— Error driven algorithms, online vs. batch algorithms



This week

* A new model/algorithm
— the perceptron

— and its variants: voted, averaged

 Fundamental Machine Learning Concepts
— Online vs. batch learning

— Error-driven learning

* HW3 coming soon!



