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Binary classification
via hyperplanes

* A classifier is a hyperplane (w,b)

e At test time, we check on what
side of the hyperplane examples

fall
9 = sign(wx + b)

 This is a linear classifier

— Because the prediction is a linear
combination of feature values x



TASK: BINARY CLASSIFICATION

Given:
1. An input space X
2. An unknown distribution D over Xx{—1,+1}

Compute: A function f minimizing: E, v .p f(x) #y]




Learning a Linear Classifier
as an Optimization Problem
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Learning a Linear Classifier
as an Optimization Problem

w.b w,b

N
min L(w, b) = min Z]Iynw X, + b) < 0)+ AR(w
n=1

, b)

KProbIem: The 0-1 loss above is NP-hard to optimize
exactly/approximately in general

* Solution: Different loss function approximations and
regularizers lead to specific algorithms
(e.g., perceptron, support vector machines, logistic

@gression, etc.)
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The 0-1 Loss

(00) y(wx +b)

 Small changes in w,b can lead to big changes
in the loss value

* 0-1 loss is non-smooth, non-convex



Approximating the 0-1 loss with
surrogate loss functions

 Examples (with b =0)

— Hingeloss  [1 — yaw ' x,]+ = max{O, 1 — yaw'xn}

— Log loss log[1 + exp(—y.w ' x,)]
— Exponential loss exp(—y.w ' x,)
 All are convex upper- Lo’ —

bounds on the 0-1 loss




Approximating the 0-1 loss with
surrogate loss functions

 Examples (with b =0)
— Hinge loss  [1 — yaw 'x,]+ = max{O, 1= yaw'xn}
— Log loss log[1 + exp(—y.w ' x,)]
— Exponential loss exp(—y.w ' x,)
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Approximating the 0-1 loss with
surrogate loss functions

 Examples (with b =0)
— Hinge loss  [1 — yaw 'x,]+ = max{O, 1= yaw'xn}
— Log loss log[1 + exp(—y.w ' x,)]
— Exponential loss exp(—y.w ' x,)
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* Q: Which of these loss Lw)
functions is most
sensitive to outliers?




Casting Linear Classification
as an Optimization Problem
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min L(w, b) = min Z]Iynw X, + b) < 0)+ AR(w, b)

H() Indicator function: 1 if (.) is true, O otherwise

The loss function above is called the 0-1 loss



The regularizer term

Goal: find simple solutions (inductive bias)

Ideally, we want most entries of w to be zero, so prediction
depends only on a small number of features.

Formally, we want to minimize:

D
R (w, b) = > I(wg # 0)
d=1

That’s NP-hard, so we use approximations instead.

— E.g., we encourage wy’s to be small



Norm-based Regularizers
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Norm-based Regularizers

L, norms can be used as regularizers

Smaller p favors sparse vectors w

— i.e. most entries of w are close or equal to O

[, norm: convex, smooth, easy to optimize

[ norm: encourages sparse w, convex, but not
smooth at axis points

p <1 :norm becomes non convex and hard to
optimize



Casting Linear Classification
as an Optimization Problem
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H() Indicator function: 1 if (.) is true, O otherwise
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What is the perceptron optimizing?

Algorithm 5 PERCEPTRONTRAIN(D, MaxIter)

v Wy <—o,forall d=1...D // initialize weights
2 b+ o0 // initialize bias
5 for iter = 1 ... MaxlIter do

for all (x,y) € D do

"
5 a <— ZEZI wy x5+ Db /I compute activation for this example
6: if ya < o then

7 wy — wyg +yxg, forall d=1...D // update weights
8: b<—b+y // update bias
o end if

o end for

«: end for

= return wy, wq, ..., wp, b

* Loss function is a variant of the hinge loss
max{0, —y,(w'x, + b)}



Gradient descent

* A general solution for our optimization problem
N

I(y,(w'x, + b) < 0)+ AR(w, b)
1

min L(w, b) = TJE

n

|Idea: take iterative steps to update parameters in the direction of
the gradient



Gradient descent algorithm

Objective function

to minimize Number of steps ] Step size ]

Algorithm 22 GRADIENTDESCENT(F, K i, .-

w20« {0,0,...,0) // initialize variable we are optimizing
= fork=1...Kdo

s &M« Vo F|u // compute gradient at current location
g 20 D gl // take a step down the gradient
= end for

« return z(®




lllustrating gradient descent
in 1-dimensional case
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Recap: Linear Models

General framework for binary classification
Cast learning as optimization problem
Optimization objective combines 2 terms

— loss function: measures how well classifier fits
training data

— Regularizer: measures how simple classifier is

Does not assume data is linearly separable

Lets us separate model definition from training
algorithm (Gradient Descent)



