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Binary classification
via hyperplanes

• A classifier is a hyperplane (w,b)
• At test time, we check on what 

side of the hyperplane examples 
fall

!" = $%&'()*+ + -)

• This is a linear classifier
– Because the prediction is a linear 

combination of feature values x





Learning a Linear Classifier
as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise
The loss function above is called the 0-1 loss

Loss function
measures how well 

classifier fits training 
data

Regularizer
prefers solutions 
that generalize 

well

Objective 
function



Learning a Linear Classifier
as an Optimization Problem

• Problem: The 0-1 loss above is NP-hard to optimize 
exactly/approximately in general

• Solution: Different loss function approximations and 
regularizers lead to specific algorithms

(e.g., perceptron, support vector machines, logistic 
regression, etc.)



The 0-1 Loss

• Small changes in w,b can lead to big changes 
in the loss value

• 0-1 loss is non-smooth, non-convex



Approximating the 0-1 loss with 
surrogate loss functions

• Examples (with b = 0)
– Hinge loss
– Log loss
– Exponential loss

• All are convex upper-
bounds on the 0-1 loss



Approximating the 0-1 loss with 
surrogate loss functions

• Examples (with b = 0)
– Hinge loss
– Log loss
– Exponential loss

• Q: Which of these loss 
functions is not 
smooth?



Approximating the 0-1 loss with 
surrogate loss functions

• Examples (with b = 0)
– Hinge loss
– Log loss
– Exponential loss

• Q: Which of these loss 
functions is most 
sensitive to outliers?



Casting Linear Classification
as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise
The loss function above is called the 0-1 loss

Loss function
measures how well 

classifier fits training 
data

Regularizer
prefers solutions 
that generalize 

well

Objective 
function



The regularizer term

• Goal: find simple solutions  (inductive bias)

• Ideally, we want most entries of w to be zero, so prediction 
depends only on a small number of features.

• Formally, we want to minimize:

• That’s NP-hard, so we use approximations instead. 
– E.g., we encourage wd’s to be small



Norm-based Regularizers

• !" norms can be used as regularizers

Contour
plots for p = 2 p = 1 p < 1



Norm-based Regularizers

• !" norms can be used as regularizers
• Smaller p favors sparse vectors w
– i.e. most entries of w are close or equal to 0

• !# norm: convex, smooth, easy to opBmize
• !$ norm:  encourages sparse w, convex, but not 

smooth at axis points
• % < 1 : norm becomes non convex and hard to 

optimize



Casting Linear Classification
as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise
The loss function above is called the 0-1 loss

Loss function
measures how well 

classifier fits training 
data

Regularizer
prefers solutions 
that generalize 

well

Objective 
function



What is the perceptron optimizing?

• Loss function is a variant of the hinge loss



Gradient descent

• A general solution for our optimization problem

Idea: take iterative steps to update parameters in the direction of 
the gradient



Gradient descent algorithm
Objective function 

to minimize Number of steps Step size



Illustrating gradient descent
in 1-dimensional case



Recap: Linear Models

• General framework for binary classification
• Cast learning as optimization problem
• Optimization objective combines 2 terms
– loss function: measures how well classifier fits 

training data 
– Regularizer: measures how simple classifier is

• Does not assume data is linearly separable
• Lets us separate model definition from training 

algorithm (Gradient Descent)


