Neural Networks III

CMSC 422

SOHEIL FEIZI

sfeizi@cs.umd.edu

Multi-Label Classification

Q: how to extend our method for multi-label classification?

Recall: Multi-Label Classification using Logistic Regression

Multi-Label Classification Using NNs

Try different architectures and training parameters here:

http://playground.tensorflow.org

Tricky issues with neural network training

- Sensitive to initialization
 - Objective is non-convex, many local optima
 - In practice: start with random values rather than zeros
- Many other hyper-parameters
 - Number of hidden units (and potentially hidden layers)
 - Gradient descent learning rate
 - Stopping criterion

Neural networks vs. linear classifiers

Advantages of Neural Networks:

- More expressive
- Less feature engineering

Challenges using Neural Networks:

- Harder to train
- Harder to interpret

Neural Network Architectures

 We focused on a multi-layer feedforward network

- Many other deeper architectures
 - Convolutional networks
 - Recurrent networks (LSTMs)
 - Dense Nets, ResNets, etc

Issues in Deep Neural Networks

- Long training time
 - There are sometimes a lot of training data
 - Many iterations (epochs) are typically required for optimization
 - Computing gradients in each iteration takes too much time

Improving on Gradient Descent: Stochastic Gradient Descent (SGD)

• Update weights for each example
$$E = \frac{1}{2}(y^n - \hat{y}^n)^2 \qquad w_i(t+1) = w_i(t) - \epsilon \frac{\partial E^n}{\partial w_i}$$

- + Fast, online
- Sensitive to noise
- Mini-batch SGD: Update weights for a small set of examples

$$E = \frac{1}{2} \sum_{n \in \mathbb{R}} (y^n - \hat{y}^n)^2 \qquad \mathbf{w}_i(t+1) = \mathbf{w}_i(t) - \epsilon \frac{\partial E^B}{\partial \mathbf{w}_i}$$

- + Fast, online
- + Robust to noise

Improving on Gradient Descent: SGD with Momentum

Update based on gradients + previous direction

$$v_i(t) = \alpha v_i(t-1) - (1-\alpha) \frac{\partial E}{\partial w_i}(t)$$
$$w(t+1) = w(t) + v(t)$$

- + Converge faster
- + Avoid oscillation

Improving on Gradient Descent: SGD with Momentum

SGD w/o momentum

SGD with momentum helps dampen oscillations

Improving the Training Objective: Regularization/Weight Decay

Penalize the size of the weights

$$C = E + \frac{\lambda}{2} \sum_{i} w_i^2$$

$$w_i(t+1) = w_i(t) - \epsilon \frac{\partial C}{\partial w_i} = w_i(t) - \epsilon \frac{\partial E}{\partial w_i} - \lambda w_i$$

→ Improves generalization

Vanishing Gradient Problem

In deep networks

Gradients in the lower layers are typically extremely small

- Optimizing multi-layer neural networks takes huge amount of

time

Derivative of sigmoid in [0,1]
$$\hat{y}$$

$$\frac{\partial E}{\partial w_{ki}} = \sum_{n} \frac{\partial z_{i}^{n}}{\partial w_{ki}} \frac{d\hat{y}_{i}^{n}}{dz_{i}^{n}} \frac{\partial E}{\partial \hat{y}_{i}^{n}} = \sum_{n} \frac{\partial z_{i}^{n}}{\partial w_{ki}} \frac{d\hat{y}_{i}^{n}}{dz_{i}^{n}} \sum_{j} w_{ij} \frac{d\hat{y}_{j}^{n}}{dz_{j}^{n}} \frac{\partial E}{\partial \hat{y}_{j}^{n}}$$

Vanishing Gradient Problem

- Vanishing gradient problem can be mitigated
 - Using custom neural network architectures
 - Using other non-linearities
 - E.g., Rectifier: f(x) = max(0,x)

ResNet

Deep Residual Learning for Image Recognition

https://arxiv.org > cs ▼

by K He - 2015 - Cited by 19999 - Related articles

Dec 10, 2015 - Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are ...