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Multi-Label Classification

Q: how to extend our method for multi-label
classification?



Recall: Multi-Label Classification using
Logistic Regression
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Multi-Label Classification Using NNs
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Try different architectures and training
parameters here:

http://playground.tensorflow.org
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DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%
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Noise: 0
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Which properties do
you want to feed in?
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Tricky issues with
neural network training

* Sensitive to initialization
— Objective is non-convex, many local optima

— In practice: start with random values rather than
Zeros

 Many other hyper-parameters

— Number of hidden units (and potentially hidden
layers)

— Gradient descent learning rate

— Stopping criterion



Neural networks
vs. linear classifiers

Advantages of Neural Networks:
— More expressive
— Less feature engineering

Challenges using Neural Networks:
— Harder to train
— Harder to interpret



Neural Network Architectures

 We focused on a multi-layer feedforward
network

 Many other deeper architectures
— Convolutional networks
— Recurrent networks (LSTMs)

— Dense Nets, ResNets, etc



Issues in Deep Neural Networks

* Long training time
— There are sometimes a lot of training data

— Many iterations (epochs) are typically required for
optimization
— Computing gradients in each iteration takes too much time

Slide credit: adapted from Bohyung Han



Improving on Gradient Descent:
Stochastic Gradient Descent (SGD)

 Update weights for each example
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+ Fast, online
— Sensitive to noise

* Mini-batch SGD: Update weights for a small set of
examples
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+ Fast, online
+ Robust to noise

Slide credit: Bohyung Han



Improving on Gradient Descent:
SGD with Momentum

* Update based on gradients + previous direction
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+ Converge faster
+ Avoid oscillation

Slide credit: Bohyung Han



Improving on Gradient Descent:
SGD with Momentum

SGD w/o momentum @ ?
SGD with momentum @
helps dampen

oscillations

Image: http://ruder.io/optimizing-gradient-descent/index.html#momentum



Improving the Training Objective:
Regularization/Weight Decay

* Penalize the size of the weights
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— Improves generalization

Slide credit: Bohyung Han



Vanishing Gradient Problem

In deep networks

— Gradients in the lower layers are typically extremely small
— Optimizing multi-layer neural networks takes huge amount of

time
2 Derivative of sigmoid in [0,1]
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Slide credit: adapted from Bohyung Han



Vanishing Gradient Problem

* Vanishing gradient problem can be mitigated

— Using custom neural network architectures

— Using other non-linearities
* E.g., Rectifier: f(x) = max(0,x)



ResNet
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Deep Residual Learning for Image Recognition

https://arxiv.org>cs ¥

by KHe - 2015 - Cited by 19999 - Related articles

Dec 10, 2015 - Abstract: Deeper neural networks are more difficult to train.
We present a residual learning framework to ease the training of networks

that are ...



