Neural Networks IV

CMSC 422

SOHEIL FEIZI

sfeizi@cs.umd.edu

Why Neural Networks?

Perceptron

- Proposed by Frank Rosenblatt in 1957
- Real inputs/outputs, threshold activation function

Revival in the 1980's

Backpropagation discovered in 1970's but popularized in 1986

 David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams. "Learning representations by back-propagating errors." In Nature, 1986.

MLP is a universal approximator

- Can approximate any non-linear function in theory, given enough neurons, data
- Kurt Hornik, Maxwell Stinchcombe, Halbert White. "Multilayer feedforward networks are universal approximators." Neural Networks, 1989

Generated lots of excitement and applications

Neural Networks Applied to Vision

LeNet – vision application

- LeCun, Y; Boser, B; Denker, J; Henderson, D; Howard, R;
 Hubbard, W; Jackel, L, "Backpropagation Applied to Handwritten
 Zip Code Recognition," in Neural Computation, 1989
- USPS digit recognition, later check reading

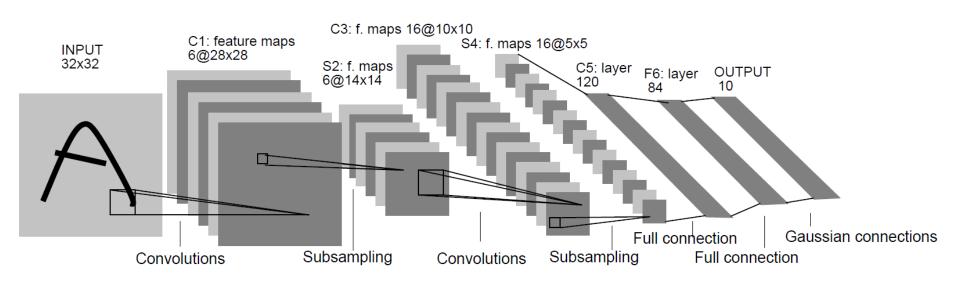


Image credit: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 1998.

New "winter" and revival in early 2000's

New "winter" in the early 2000's due to

- problems with training NNs
- Support Vector Machines (SVMs), Random Forests (RF) – easy to train, nice theory

Revival again by 2011-2012

- Name change ("neural networks" -> "deep learning")
- + Algorithmic developments that made training somewhat easier
- + Big data + GPU computing
- = performance gains on many tasks (esp Computer Vision)

Big Data

- ImageNet Large Scale Visual Recognition Challenge
 - 1000 categories w/ 1000 images per category
 - 1.2 million training images, 50,000 validation, 150,000 testing

AlexNet Architecture

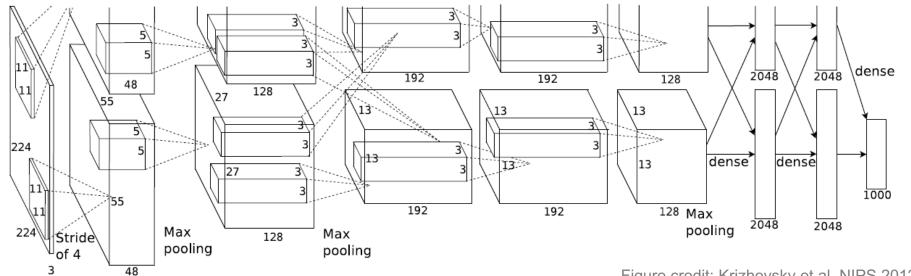


Figure credit: Krizhevsky et al, NIPS 2012.

60 million parameters!

Various tricks

- ReLU nonlinearity
- Overlapping pooling
- Local response normalization
- Dropout set hidden neuron output to 0 with probability .5
- Data augmentation
- Training on GPUs

GPU Computing

 Big data and big models require lots of computational power

GPUs

- thousands of cores for parallel operations
- multiple GPUs
- still took about 5-6 days to train AlexNet on two NVIDIA GTX 580 3GB GPUs (much faster today)

Image Classification Performance

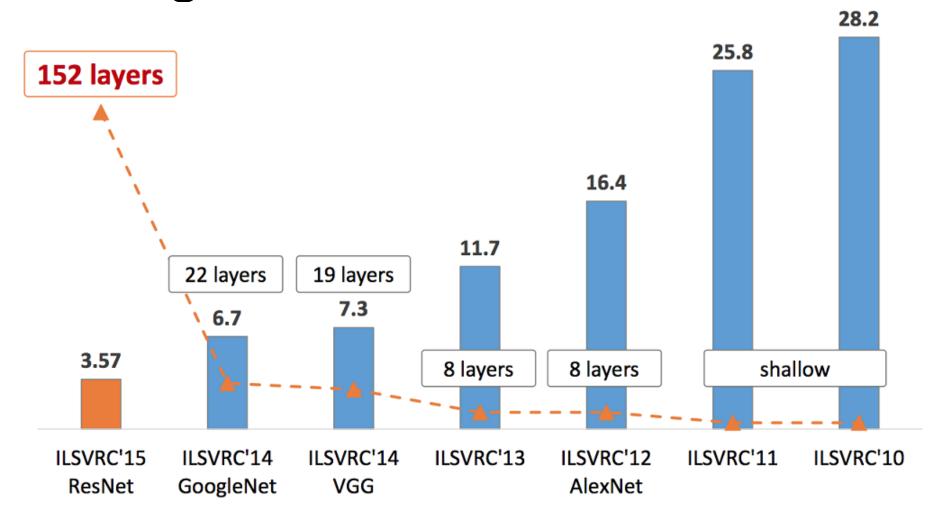
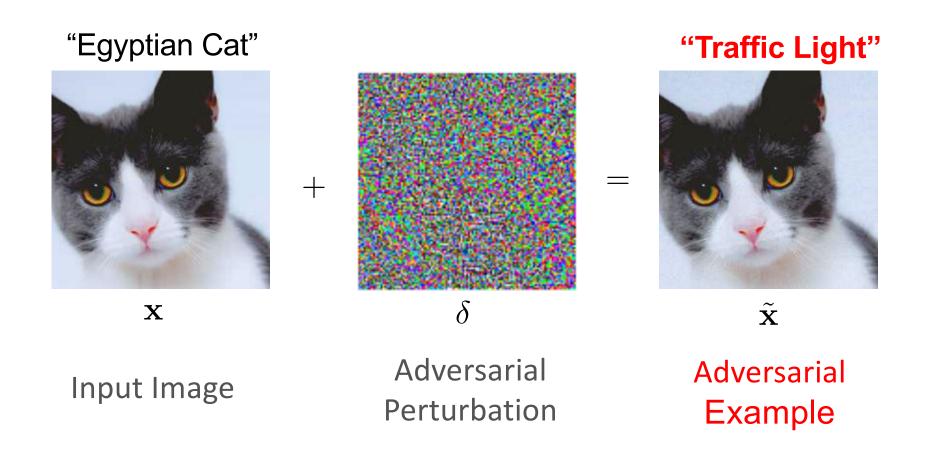


Image Classification Top-5 Errors (%)

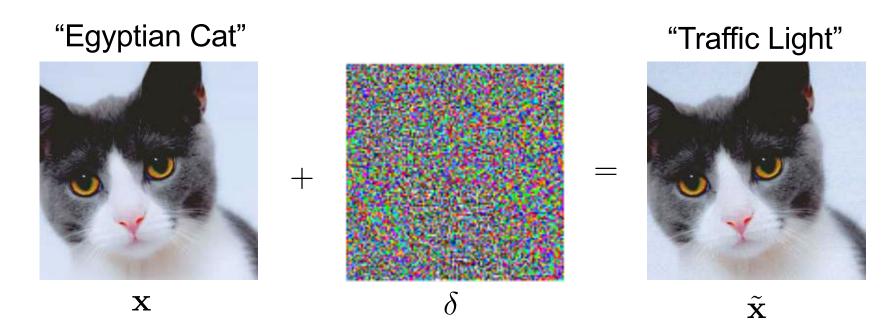
Figure from: K. He, X. Zhang, S. Ren, J. Sun. "Deep Residual Learning for Image Recognition". arXiv 2015. (slides)

Robustness of Classifiers



 Adversarial Examples (Szegedy et al.'14, Biggio et al.'13, Goodfellow et al.'14)

Additive L_p Attack Threat



Optimization:

$$\max_{\delta} \ \ell_{cls} \left(f_{\theta}(\mathbf{x} + \delta), y \right)$$
$$\delta \in \mathbf{\Delta} := \{ \delta \in \mathbb{R}^n : \|\delta\|_p \le \rho \}$$

Solve using Projected Gradient Descent (Madry et al.' 17, Goodfellow et al.' 15, Carlini & Wagner '16)

Adversarial Training

Standard ERM training:

$$\min_{\theta} \mathbb{E}_{(\mathbf{x},y)} \left[\ell_{cls} \left(f_{\theta}(\mathbf{x}), y \right) \right]$$

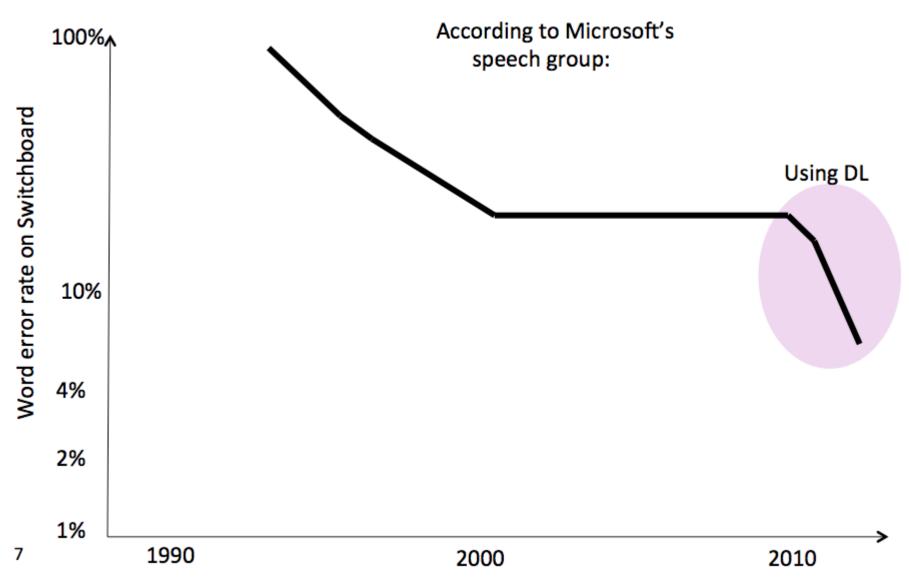
Adversarial training for additive attacks (Madry et al.'17):

$$\min_{\theta} \mathbb{E}_{(\mathbf{x},y)} \left[\max_{\delta} \ell_{cls} \left(f_{\theta}(\mathbf{x} + \delta), y \right) \right]$$

$$\delta \in \mathbf{\Delta} := \{ \delta \in \mathbb{R}^n : \|\delta\|_p \le \rho \}$$

Solve using alternative SGD+PGD

Speech Recognition



Recurrent Neural Networks for Language Modeling

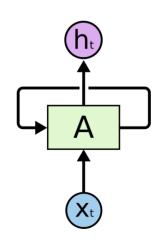
- Speech recognition is difficult due to ambiguity
 - "how to recognize speech"
 - or "how to wreck a nice beach"?

- Language model gives probability of next word given history
 - P("speech" | "how to recognize")?

Recurrent Neural Networks

Networks with loops

- The output of a layer is used as input for the same (or lower) layer
- Can model dynamics (e.g. in space or time)



Loops are unrolled

- Now a standard feed-forward network with many layers
- Suffers from vanishing gradient problem
- In theory, can learn long term memory, in practice not (Bengio et al, 1994)

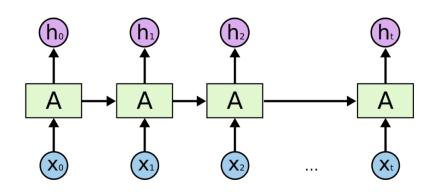


Image credit: Chritopher Olah's blog http://colah.github.io/posts/2015-08-Understanding-LSTMs/ Sepp Hochreiter (1991), Untersuchungen zu dynamischen neuronalen Netzen, Diploma thesis. Institut f. Informatik, Technische Univ. Munich. Advisor: J. Schmidhuber.

Y. Bengio, P. Simard, P. Frasconi. Learning Long-Term Dependencies with Gradient Descent is Difficult. In TNN 1994.

Long Short Term Memory (LSTM)

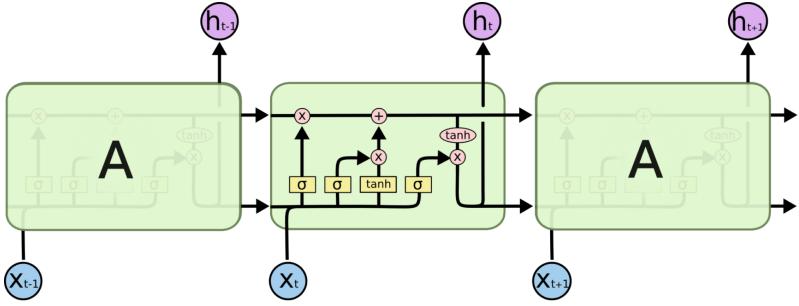


Image credit: Christopher Colah's blog, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- A type of RNN explicitly designed not to have the vanishing or exploding gradient problem
- Models long-term dependencies
- Memory is propagated and accessed by gates
- Used for speech recognition, language modeling ...

Long Short Term Memory (LSTM)

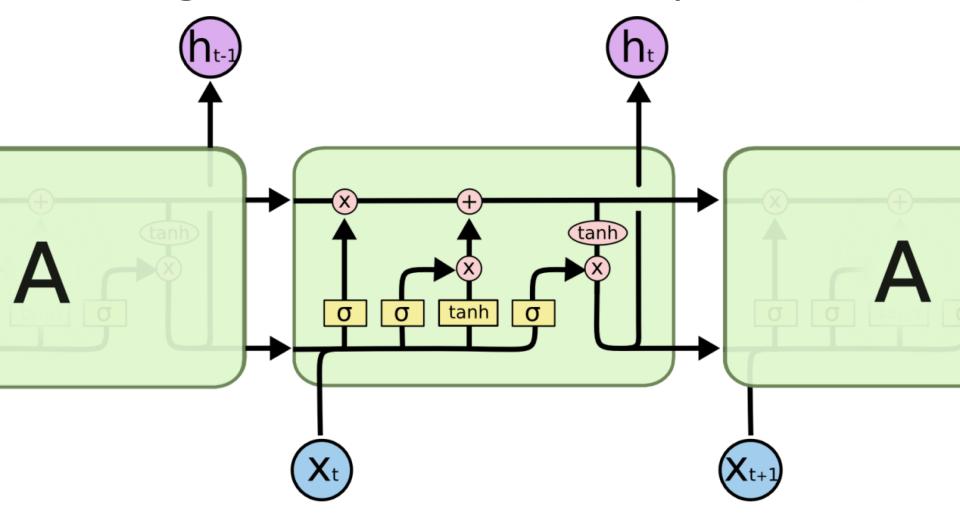


Image credit: Christopher Colah's blog, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

What you should know about deep neural networks

- Why they are difficult to train
 - Initialization
 - Overfitting
 - Vanishing gradient
 - Require large number of training examples
- What can be done about it
 - Improvements to gradient descent
 - Stochastic gradient descent
 - Momentum
 - Weight decay
 - Alternate non-linearities and new architectures

References (& great tutorials) if you want to explore further:

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-1/http://cs231n.github.io/neural-networks-1/

Keeping things in perspective...

In 1958, the New York Times reported the perceptron to be "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."