K-Means: an example of unsupervised learning

CMSC 422

SOHEIL FEIZI

sfeizi@cs.umd.edu

Supervised Learning

Data comes in different formats:

$$\left\{ (x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)}) \right\} \qquad \qquad \text{Training set}$$
 features
$$\text{target/label}$$

$$\text{variable}$$

Goal: predict the label/target using features

Unsupervised Learning

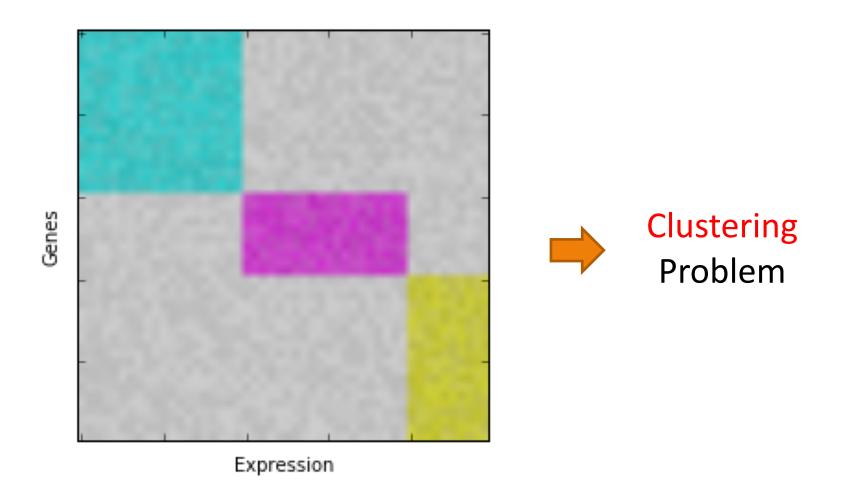
Data comes in different formats:

$$\left\{x^{(1)},x^{(1)},...,x^{(N)}\right\} \quad \Longrightarrow \quad \begin{array}{c} \text{Training} \\ \text{set} \end{array}$$
 features

Goal: find "interesting" patterns in data

Unsupervised Learning

Example



Today's Topics

- A new algorithm
 - K-Means Clustering

- Fundamental Machine Learning Concepts
 - Unsupervised vs. supervised learning

Supervised Machine Learning as Function Approximation

Problem setting

- Set of possible instances X
- Unknown target function $f: X \to Y$
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$

Input

• Training examples $\{(x^{(1)}, y^{(1)}), ... (x^{(N)}, y^{(N)})\}$ of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

Supervised vs. unsupervised learning

- Clustering is an example of unsupervised learning
- We are not given examples of classes y
- Instead we have to discover classes in data

Clustering

Goal: automatically partition examples into groups of similar examples

- Why? It is useful for
 - Automatically organizing data
 - Understanding hidden structure in data
 - Preprocessing for further analysis

What can we cluster in practice?

- news articles or web pages by topic
- protein sequences by function, or genes according to expression profile
- users of social networks by interest
- customers according to purchase history

•

Clustering

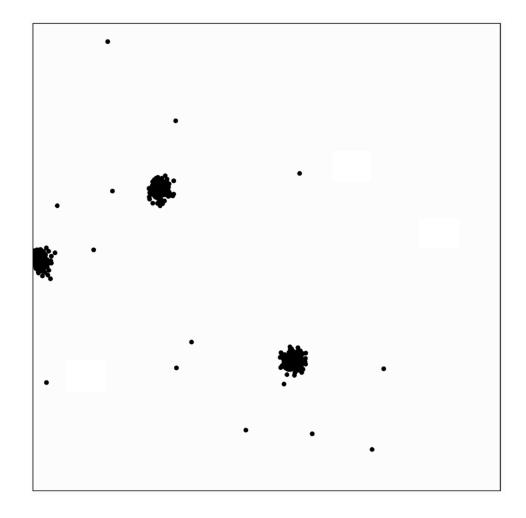
Input

- a set $S = \{x_1, x_2, ..., x_n\}$ of n points in feature space
- a distance measure specifying distance $d(x_i,x_j)$ between pairs (x_i,x_j)

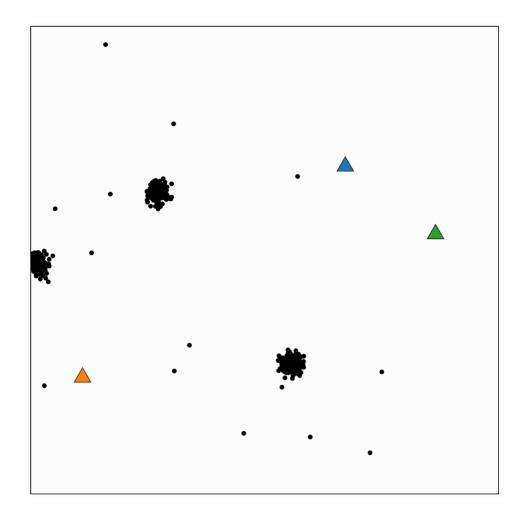
Output

- A partition $\{S_1, S_2, ..., S_k\}$ of S
- Also represented as $\{z_1,...,z_n\}$ where z_i is the index of the partition to which x_i belongs.

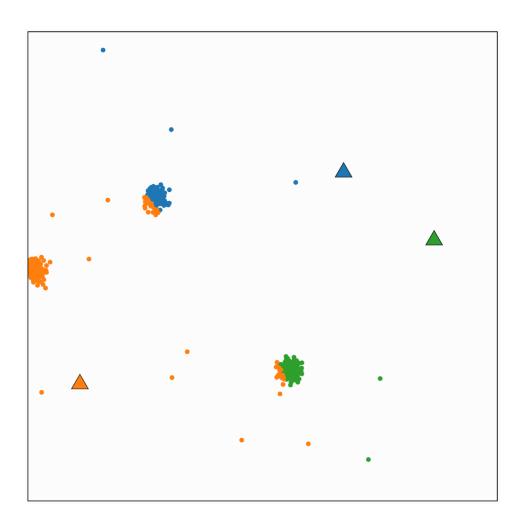
Steps of Algorithm - Gather data



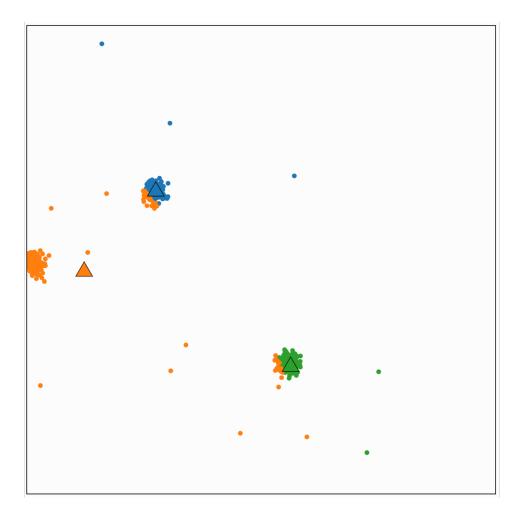
- Gather data
- Initialize means



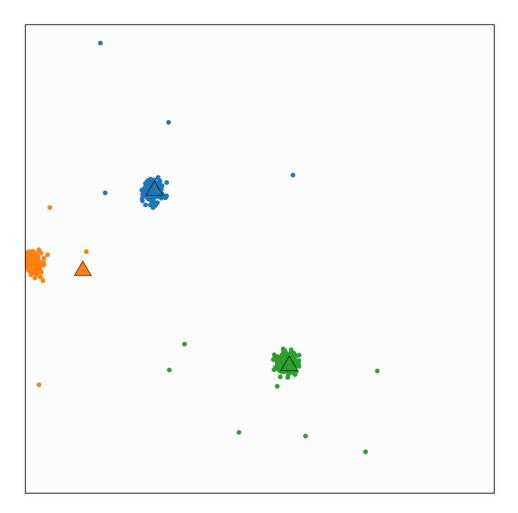
- Gather data
- Initialize means
- Repeat:
- Assign classes



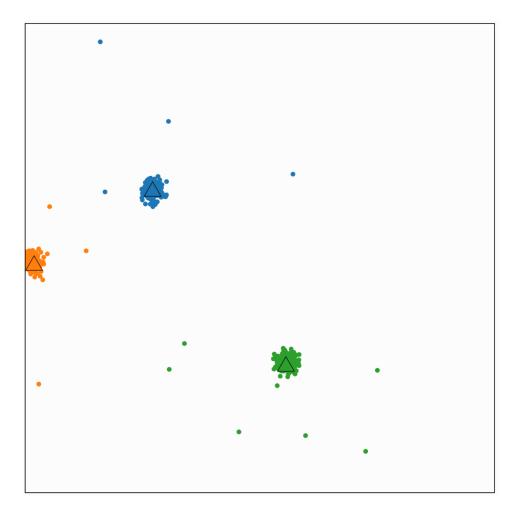
- Gather data
- Initialize means
- Repeat:
- Assign classes
- Adjust means



- Gather data
- Initialize means
- Repeat:
- Assign classes
- Adjust means



- Gather data
- Initialize means
- Repeat:
- Assign classes
- Adjust means



The K-Means Algorithm

Training Data

K: number of clusters to discover

Algorithm 4 K-MEANS(D, K)

```
1: for k = 1 to K do
      \mu_k \leftarrow some random location // randomly initialize mean for kth cluster
   end for
4: repeat
      for n = 1 to N do
         z_n \leftarrow \operatorname{argmin}_k || \mu_k - x_n ||
                                                           // assign example n to closest center
6:
      end for
      for k = 1 to K do
         \mathbf{X}_k \leftarrow \{ \mathbf{x}_n : \mathbf{z}_n = k \}
                                                                   // points assigned to cluster k
          \mu_k \leftarrow \text{MEAN}(\mathbf{X}_k)
                                                                  // re-estimate mean of cluster k
10:
      end for
   until us stop changing
13: return z
                                                                     // return cluster assignments
```

The K-Means Optimization

Assignment objective: For each i,

$$\arg\min_{z_i} \|x_i - \mu_{z_i}\|^2$$

Mean update objective:

$$\min_{\mu_j} \sum_{\{i|z_i=j\}} \|x_i - \mu_{z_i}\|^2$$

Overall objective:

$$\arg\min_{S} \sum_{i=1}^{k} \sum_{x \in S_i} ||x - \mu_i||^2 = \arg\min_{S} \sum_{i=1}^{k} |S_i| Var S_i$$

where μ_i is the mean of the points in S_i .

K-Means properties

- Time complexity: O(KNL) where
 - K is the number of clusters
 - N is number of examples
 - L is the number of iterations
- K is a hyperparameter
 - Needs to be set in advance (or learned on dev set)
- Different initializations yield different results!
 - Doesn't necessarily converge to best partition
- "Global" view of data: revisits all examples at every iteration

Questions for you...

- For what types of data can we not use kmeans?
- Are we sure it will find an optimal clustering?
- Does the initialization of the random means impact the result?
- Are there clusters that cannot be discovered using k-means?
- Do you know any other clustering algorithms?

What you should know

- New Algorithms
 - K-NN classification
 - K-means clustering
- Fundamental ML concepts
 - How to draw decision boundaries
 - What decision boundaries tells us about the underlying classifiers
 - The difference between supervised and unsupervised learning