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Unsupervised Learning

• Discovering hidden structure in data

• What algorithms do we know for unsupervised 
learning?
– K-Means Clustering

• Today:  how can we learn better representations 
of our data points?



Dimensionality Reduction

• Goal: extract hidden lower-dimensional 
structure from high dimensional datasets

• Why?
– To visualize data more easily
– To remove noise in data
– To lower resource requirements for 

storing/processing data
– To improve classification/clustering



• Linear algebra review:
– Matrix decomposition with eigenvectors and 

eigenvalues



Principal Component Analysis

• Goal: Find a projection of the data onto 
directions that maximize variance of the 
original data set
– Intuition: those are directions in which most 

information is encoded

• Definition: Principal Components are 
orthogonal directions that capture most of the 
variance in the data



PCA: finding principal components

• 1st PC
– Projection of data points along 1st PC 

discriminates data most along any one 
direction

• 2nd PC
– next orthogonal direction of greatest 

variability
• And so on…



Examples of data points in D dimensional space 
that can be effectively represented in a d-
dimensional subspace (d < D)



PCA: notation

• Data points
– Represented by matrix X of size NxD
– Let’s assume data is centered

• Principal components are d vectors:  !", !$, … !&
!'. !) = 0, , ≠ . and !'. !' = 1

• The sample variance data projected on vector v is 
∑'1"2 (4'5!)$ = 7! 5 7!



PCA formally

• Finding vector that maximizes sample variance 
of projected data:

!"#$!%& '()( )' such that '(' = 1

• A constrained optimization problem
§ Lagrangian folds constraint into objective: 
!"#$!%& '()( )' − -('(' − 1)

§ Solutions are vectors v such that )( )' = -'
§ i.e. eigenvectors of )( )(sample covariance matrix)



PCA formally

• The eigenvalue ! denotes the amount of variability 
captured along dimension "
– Sample variance of projection "#$# $" = !

• If we rank eigenvalues from large to small
– The 1st PC is the eigenvector of $# $ associated with 

largest eigenvalue
– The 2nd PC is the eigenvector of $# $ associated with 

2nd largest eigenvalue
– …



Alternative interpretation of PCA

• PCA finds vectors v such that projection on to 
these vectors minimizes reconstruction error



Resulting PCA algorithm



How to choose the 
hyperparameter K?

• i.e. the number of dimensions

• We can ignore the components of smaller 
significance



An example: Eigenfaces



PCA pros and cons

• Pros
– Eigenvector method
– No tuning of the parameters
– No local optima

• Cons
– Only based on covariance (2nd order statistics)
– Limited to linear projections



What you should know

• Principal Components Analysis

– Goal: Find a projection of the data onto directions 
that maximize variance of the original data set

– PCA optimization objectives and resulting algorithm

– Why this is useful!


