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Today’s topics

• Nonlinear dimensionality reduction 

• Kernel methods



PCA – Principal Component analysis 

- Statistical approach 
for data 
compression and 
visualization

- Invented by Karl 
Pearson in 1901

- Weakness: linear 
components only.



Autoencoder

§ Unlike the PCA now we 
can use activation 
functions to achieve 
non-linearity.

§ It has been shown that 
an AE without activation 
functions achieves the 
PCA capacity.

!



Uses
- The autoencoder idea was a part of NN 

history for decades (LeCun et al, 1987).

- Traditionally an autoencoder is used for 
dimensionality reduction and feature 
learning.

- Recently, the connection between 
autoencoders and latent space modeling 
has brought autoencoders to the front of 
generative modeling



Simple Idea

- Given data ! (no labels) we would like to learn 
the functions " (encoder) and # (decoder) 
where:

" ! = % &! + ( = )

and 

# ) = % &*z + (* = ,!

s.t ℎ ! = # " ! = ,!

where ℎ is an approximation of the identity   
function.

() is some latent
representation or code
and % is a non-linearity 
such as the sigmoid)

,!" ! # )!

(,! is !’s 
reconstruction)

)



Simple Idea
Learning the identity function 
seems trivial, but with added 
constraints on the network (such 
as limiting the number of hidden 
neurons or regularization) we 
can learn information about the 
structure of the data.

Trying to capture the 
distribution of the 
data (data specific!)



Training the AE
Using Gradient Descent we can simply train the 
model as any other FC NN with:

- Traditionally with squared error loss function

! ", $" = " − $" '

- Why?



AE Architecture 
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• Hidden layer is 
Undercomplete if smaller 
than the input layer
qCompresses the input
qCompresses well only 

for the training dist.

• Hidden nodes will be
qGood features for the 

training distribution.
qBad for other types on 

input



Deep Autoencoder Example

• https://cs.stanford.edu/people/karpathy/co
nvnetjs/demo/autoencoder.html - By Andrej 
Karpathy

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html


Encoder

Encoder
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Simple latent space interpolation



Simple latent space interpolation

!" !#

!$ = & + 1 − &
!$

Decoder



Simple latent space interpolation



Kernel Methods



Beyond linear classification

• Problem: linear classifiers
– Easy to implement and easy to optimize
– But limited to linear decision boundaries

• What can we do about it?
– Neural networks
• Very expressive but harder to optimize (non-convex 

objective)
– Today: Kernels



Kernel Methods

• Goal: keep advantages of linear models, but 
make them capture non-linear patterns in 
data!

• How?
– By mapping data to higher dimensions where it 

exhibits linear patterns



Classifying non-linearly separable data 
with a linear classifier: examples

Non-linearly 
separable data in 1D

Becomes linearly 
separable in new 2D 
space
defined by the 
following mapping:



Classifying non-linearly separable data 
with a linear classifier: examples

Non-linearly 
separable data in 2D

Becomes linearly separable in the 3D space 
defined by the following transformation:



Defining feature mappings

• Map an original feature vector
to an expanded version

• Example: quadratic feature mapping represents feature 
combinations



Feature Mappings

• Pros: can help turn non-linear classification 
problem into linear problem

• Cons: “feature explosion” creates issues when 
training linear classifier in new feature space
– More computationally expensive to train
– More training examples needed to avoid 

overfitting



Kernel Methods

• Goal: keep advantages of linear models, but 
make them capture non-linear patterns in 
data!

• How?
– By mapping data to higher dimensions where it 

exhibits linear patterns
– By rewriting linear models so that the mapping 

never needs to be explicitly computed



The Kernel Trick

• Rewrite learning algorithms so they only depend on 
dot products between two examples

• Replace dot product                     
by kernel function
which computes the dot product implicitly



Example of Kernel function



Another example of Kernel 
Function (from CIML)

What is the function k(x,z) that 
can implicitly compute the dot 

product                             ?



Kernels: Formally defined



Kernels: Mercer’s condition

For all square 
integrable functions f

• Can any function be used as a kernel function?
• No! it must satisfy Mercer’s condition.



Kernels: Constructing combinations 
of kernels



Commonly Used Kernel Functions



The Kernel Trick

• Rewrite learning algorithms so they only depend on 
dot products between two examples

• Replace dot product                     
by kernel function
which computes the dot product implicitly



“Kernelizing” the perceptron

• Naïve approach: let’s explicitly train a perceptron in 
the new feature space

Can we apply the Kernel trick?
Not yet, we need to rewrite the algorithm using 

dot products between examples



“Kernelizing” the perceptron

• Perceptron Representer Theorem

“During a run of the perceptron algorithm, the weight vector 
w can always be represented as a linear combination of the 
expanded training data”

Proof by induction
(in CIML)



“Kernelizing” the perceptron
• We can use the perceptron representer theorem to compute 

activations as a dot product between examples



“Kernelizing” the perceptron

• Same training algorithm, but
doesn’t explicitly refers to weights w anymore
only depends on dot products between examples

• We can apply the kernel trick!



Kernel Methods

• Goal: keep advantages of linear models, but 
make them capture non-linear patterns in 
data!

• How?
– By mapping data to higher dimensions where it 

exhibits linear patterns
– By rewriting linear models so that the mapping 

never needs to be explicitly computed



Discussion

• Other algorithms can be kernelized:
– See CIML for K-means

• Do Kernels address all the downsides of  
“feature explosion”?
– Helps reduce computation cost during training
– But overfitting remains an issue



What you should know

• Kernel functions
– What they are, why they are useful, how they relate to 

feature combination

• Kernelized perceptron
– You should be able to derive it and implement it


