
AutoEncoders & Kernels

CMSC 422
SOHEIL FEIZI
sfeizi@cs.umd.edu

Slides adapted from MARINE CARPUAT
and GUY GOLAN

mailto:marine@cs.umd.edu

Today’s topics

• Nonlinear dimensionality reduction

• Kernel methods

PCA – Principal Component analysis

- Statistical approach
for data
compression and
visualization

- Invented by Karl
Pearson in 1901

- Weakness: linear
components only.

Autoencoder

§ Unlike the PCA now we
can use activation
functions to achieve
non-linearity.

§ It has been shown that
an AE without activation
functions achieves the
PCA capacity.

!

Uses
- The autoencoder idea was a part of NN

history for decades (LeCun et al, 1987).

- Traditionally an autoencoder is used for
dimensionality reduction and feature
learning.

- Recently, the connection between
autoencoders and latent space modeling
has brought autoencoders to the front of
generative modeling

Simple Idea

- Given data ! (no labels) we would like to learn
the functions " (encoder) and # (decoder)
where:

" ! = % &! + (=)

and

) = % &*z + (* = ,!

s.t ℎ ! = # " ! = ,!

where ℎ is an approximation of the identity
function.

() is some latent
representation or code
and % is a non-linearity
such as the sigmoid)

,!" ! #)!

(,! is !’s
reconstruction)

)

Simple Idea
Learning the identity function
seems trivial, but with added
constraints on the network (such
as limiting the number of hidden
neurons or regularization) we
can learn information about the
structure of the data.

Trying to capture the
distribution of the
data (data specific!)

Training the AE
Using Gradient Descent we can simply train the
model as any other FC NN with:

- Traditionally with squared error loss function

! ", $" = " − $" '

- Why?

AE Architecture

!

"!

#

#′
% !

• Hidden layer is
Undercomplete if smaller
than the input layer
qCompresses the input
qCompresses well only

for the training dist.

• Hidden nodes will be
qGood features for the

training distribution.
qBad for other types on

input

Deep Autoencoder Example

• https://cs.stanford.edu/people/karpathy/co
nvnetjs/demo/autoencoder.html - By Andrej
Karpathy

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Encoder

Encoder

!"

!#

Simple latent space interpolation

Simple latent space interpolation

!" !#

!$ = & + 1 − &
!$

Decoder

Simple latent space interpolation

Kernel Methods

Beyond linear classification

• Problem: linear classifiers
– Easy to implement and easy to optimize
– But limited to linear decision boundaries

• What can we do about it?
– Neural networks
• Very expressive but harder to optimize (non-convex

objective)
– Today: Kernels

Kernel Methods

• Goal: keep advantages of linear models, but
make them capture non-linear patterns in
data!

• How?
– By mapping data to higher dimensions where it

exhibits linear patterns

Classifying non-linearly separable data
with a linear classifier: examples

Non-linearly
separable data in 1D

Becomes linearly
separable in new 2D
space
defined by the
following mapping:

Classifying non-linearly separable data
with a linear classifier: examples

Non-linearly
separable data in 2D

Becomes linearly separable in the 3D space
defined by the following transformation:

Defining feature mappings

• Map an original feature vector
to an expanded version

• Example: quadratic feature mapping represents feature
combinations

Feature Mappings

• Pros: can help turn non-linear classification
problem into linear problem

• Cons: “feature explosion” creates issues when
training linear classifier in new feature space
– More computationally expensive to train
– More training examples needed to avoid

overfitting

Kernel Methods

• Goal: keep advantages of linear models, but
make them capture non-linear patterns in
data!

• How?
– By mapping data to higher dimensions where it

exhibits linear patterns
– By rewriting linear models so that the mapping

never needs to be explicitly computed

The Kernel Trick

• Rewrite learning algorithms so they only depend on
dot products between two examples

• Replace dot product
by kernel function
which computes the dot product implicitly

Example of Kernel function

Another example of Kernel
Function (from CIML)

What is the function k(x,z) that
can implicitly compute the dot

product ?

Kernels: Formally defined

Kernels: Mercer’s condition

For all square
integrable functions f

• Can any function be used as a kernel function?
• No! it must satisfy Mercer’s condition.

Kernels: Constructing combinations
of kernels

Commonly Used Kernel Functions

The Kernel Trick

• Rewrite learning algorithms so they only depend on
dot products between two examples

• Replace dot product
by kernel function
which computes the dot product implicitly

“Kernelizing” the perceptron

• Naïve approach: let’s explicitly train a perceptron in
the new feature space

Can we apply the Kernel trick?
Not yet, we need to rewrite the algorithm using

dot products between examples

“Kernelizing” the perceptron

• Perceptron Representer Theorem

“During a run of the perceptron algorithm, the weight vector
w can always be represented as a linear combination of the
expanded training data”

Proof by induction
(in CIML)

“Kernelizing” the perceptron
• We can use the perceptron representer theorem to compute

activations as a dot product between examples

“Kernelizing” the perceptron

• Same training algorithm, but
doesn’t explicitly refers to weights w anymore
only depends on dot products between examples

• We can apply the kernel trick!

Kernel Methods

• Goal: keep advantages of linear models, but
make them capture non-linear patterns in
data!

• How?
– By mapping data to higher dimensions where it

exhibits linear patterns
– By rewriting linear models so that the mapping

never needs to be explicitly computed

Discussion

• Other algorithms can be kernelized:
– See CIML for K-means

• Do Kernels address all the downsides of
“feature explosion”?
– Helps reduce computation cost during training
– But overfitting remains an issue

What you should know

• Kernel functions
– What they are, why they are useful, how they relate to

feature combination

• Kernelized perceptron
– You should be able to derive it and implement it

