Kernels

CMSC 422
SOHEIL FEIZI

sfeizi@cs.umd.edu

Slides adapted from MARINE CARPUAT

mailto:marine@cs.umd.edu

Today’s topics

e Kernel methods

* “Kernelizing” the perceptron

Beyond linear classification

* Problem: linear classifiers
— Easy to implement and easy to optimize

— But limited to linear decision boundaries

e What can we do about it?

— Neural networks

* Very expressive but harder to optimize (non-convex
objective)

— Today: Kernels

Kernel Methods

* Goal: keep advantages of linear models, but
make them capture non-linear patterns in
datal

e How?

— By mapping data to higher dimensions where it
exhibits linear patterns

Classifying non-linearly separable data
with a linear classifier: examples

Non-linearly

5855588000600 FEEsEsE X separable data in 1D

. O Becomes linearly

O O separable in new 2D
space
. = defined by the

O 0 following mapping:

x — {x,x%}

Classifying non-linearly separable data

with a linear classifier: examples

X5
x X X
X .
X %] x Non-linearly
XXt o separable data in 2D
X ”’ Is] o ‘\ p
'J e [\‘
l\ [] ® I' X-I
X \\~ o /X xx
e ® -
X x TeemT X X
X X : % .
X X
X X

Becomes linearly separable in the 3D space
defined by the following transformation:

X = {Xl,Xg} — Z = {Xlz, \/§X1X27X22}

Defining feature mappings

Map an original feature vector x
to an expanded version ¢ (x)

Example: quadratic feature mapping represents feature

combinations
$(x) = (1,2x1,2x3,2x3,...,2xp,

x%, X1X2,X1X3,...,X1XD,

X2X1, x%, X2X3,...,X2XD,

X3X1,X3X2, x%, ..., X2XD,
cey

2
XpX1,XDX2, XDX3, ..., XD)

Feature Mappings

* Pros: can help turn non-linear classification
problem into linear problem

* Cons: “feature explosion” creates issues when
training linear classifier in new feature space

— More computationally expensive to train

— More training examples needed to avoid
overfitting

Kernel Methods

* Goal: keep advantages of linear models, but
make them capture non-linear patterns in
datal

* How?
— By mapping data to higher dimensions where it
exhibits linear patterns

— By rewriting linear models so that the mapping
never needs to be explicitly computed

The Kernel Trick

* Rewrite learning algorithms so they only depend on
dot products between two examples

* Replace dot product ¢(x) ' ¢(z)
by kernel function k(x, z)
which computes the dot product implicitly

Example of Kernel function

Consider two examples x = {x1,x} and z = {z, z,}
Let's assume we are given a function k (kernel) that takes as inputs x and z
k(x,z) = (xTz)2

= (xqz + X222)2

2 2 2.2
= X1Z; + X325 +2x1x0z2122

— (Xf’ \/§X1X2,X22)T(Zf, \/521227222)
= ¢(x) é(2)

The above k implicitly defines a mapping ¢ to a higher dimensional space

o(x) = {X127 \/§X1X2, Xzz}

Another example of Kernel
Function (from CIML)

$(x) = (1,2x1,2xp,2x3,...,2xp,
x%, X1X2,X1X3,...,X1XD,
xle,x%, X2X3,...,X2X]D,
X3X1,X3X2, x%, ..., X2XD,

o oy

2
XDX1,XDX2, XDX3, ..., XD)

-

g

What is the function k(x,z) that
can implicitly compute the dot

product P(x) - ¢(z) ?

~

J

o(x) - ¢(z) =14 x121 + X020 + - - - + xpzp + ¥325 + - - - + X1xpz12D+

"+ + XpX1ZpZ1 + XpX2ZpZ2 +
=1+2 Zxdzd + ZZxdxezdze
d da e

=142x-z+ (x-2)°
= (1+x-2)?

e x%z% (9.2)
(9:3)
(9-4)
(9.5)

Kernels: Formally defined

Recall: Each kernel k has an associated feature mapping ¢
¢ takes input x € X (input space) and maps it to F (“feature space”)

Kernel k(x,z) takes two inputs and gives their similarity in F space

o : X—=>F
k © XAxX =R, k(x,z)=¢(x) ¢(z)

F needs to be a vector space with a dot product defined on it

Also called a Hilbert Space

Kernels: Mercer’s condition

* Can any function be used as a kernel function?
* No! it must satisfy Mercer’s condition.

For k to be a kernel function

@ There must exist a Hilbert Space F for which k defines a dot product

@ The above is true if K is a positive definite function

For all square
/dx/dzf(x)k(x, 2)f(z) >0 integrable functions f

Kernels: Constructing combinations
of kernels

Let ki, k> be two kernel functions then the following are as well
o k(x,z) = ki(x,2z) + ka(x,z): direct sum
o k(x,z) = aki(x,2z): scalar product

o k(x,z) = ki(x,2z)k2(x,z): direct product

Commonly Used Kernel Functions

Linear (trivial) Kernel:
k(x,z) = x 'z (mapping function ¢ is identity - no mapping)

Quadratic Kernel:

k(x,z) = (x'2)? or (14 x'z)?
Polynomial Kernel (of degree d):

k(x,z) = (x"z)? or (1+x'z)
Radial Basis Function (RBF) Kernel:

k(x,z) = exp[—7[]x — z|?]

The Kernel Trick

* Rewrite learning algorithms so they only depend on
dot products between two examples

* Replace dot product ¢(x) ' ¢(z)
by kernel function k(x, z)
which computes the dot product implicitly

