Kernels, SVMs

CMSC 422

SOHEIL FEIZI

sfeizi@cs.umd.edu

Today's topics

Kernelized Perceptron

• SVMs

The Kernel Trick

 Rewrite learning algorithms so they only depend on dot products between two examples

• Replace dot product $\phi(\mathbf{x})^{\top}\phi(\mathbf{z})$ by **kernel function** $k(\mathbf{x}, \mathbf{z})$ which computes the dot product **implicitly**

Commonly Used Kernel Functions

Linear (trivial) Kernel:

 $k(\mathbf{x},\mathbf{z}) = \mathbf{x}^{ op}\mathbf{z}$ (mapping function ϕ is identity - no mapping)

Quadratic Kernel:

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^2$$
 or $(1 + \mathbf{x}^{\top} \mathbf{z})^2$

Polynomial Kernel (of degree d):

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^d$$
 or $(1 + \mathbf{x}^{\top} \mathbf{z})^d$

Radial Basis Function (RBF) Kernel:

$$k(\mathbf{x}, \mathbf{z}) = \exp[-\gamma ||\mathbf{x} - \mathbf{z}||^2]$$

The Kernel Trick

 Rewrite learning algorithms so they only depend on dot products between two examples

• Replace dot product $\phi(\mathbf{x})^{\top}\phi(\mathbf{z})$ by **kernel function** $k(\mathbf{x}, \mathbf{z})$ which computes the dot product **implicitly**

 Naïve approach: let's explicitly train a perceptron in the new feature space

Algorithm 28 PerceptronTrain(D, MaxIter)

end for

return w, b

10: end for

```
## Initialize weights and bias

## Initialize weights and bias

## If w \leftarrow 0, b \leftarrow o

## Initialize weights and bias

## If v = 1 \dots MaxIter do

## Initialize weights and bias

## If v = 1 \dots MaxIter do

## Initialize weights and bias

## Initialize weights and
```

Can we apply the Kernel trick?

Not yet, we need to rewrite the algorithm using dot products between examples

Perceptron Representer Theorem

"During a run of the perceptron algorithm, the weight vector w can always be represented as a linear combination of the expanded training data"

Proof by induction (in CIML)

 We can use the perceptron representer theorem to compute activations as a dot product between examples

$$w \cdot \phi(x) + b = \left(\sum_{n} \alpha_{n} \phi(x_{n})\right) \cdot \phi(x) + b$$
 definition of w

$$= \sum_{n} \alpha_{n} \left[\phi(x_{n}) \cdot \phi(x)\right] + b$$
 dot products are linear
$$(9.6)$$

Algorithm 29 KernelizedPerceptronTrain(D, MaxIter)

10: end for

11: return α , b

```
1: \alpha \leftarrow 0, b \leftarrow o  // initialize coefficients and bias

2: for iter = 1 \dots MaxIter do

3: for all (x_n, y_n) \in \mathbf{D} do

4: a \leftarrow \sum_m \alpha_m \phi(x_m) \cdot \phi(x_n) + b  // compute activation for this example

5: if y_n a \leq o then

6: \alpha_n \leftarrow \alpha_n + y_n  // update coefficients

7: b \leftarrow b + y  // update bias

8: end if

9: end for • Same training algorithm, but
```

- Same training algorithm, but doesn't explicitly refers to weights w anymore only depends on dot products between examples
- We can apply the kernel trick!

Kernel Methods

- Goal: keep advantages of linear models, but make them capture non-linear patterns in data!
- How?
 - By mapping data to higher dimensions where it exhibits linear patterns
 - By rewriting linear models so that the mapping never needs to be explicitly computed

Discussion

- Other algorithms can be kernelized:
 - See CIML for K-means

- Do Kernels address all the downsides of "feature explosion"?
 - Helps reduce computation cost during training
 - But overfitting remains an issue

What you should know

- Kernel functions
 - What they are, why they are useful, how they relate to feature combination

- Kernelized perceptron
 - You should be able to derive it and implement it

Support Vector Machines

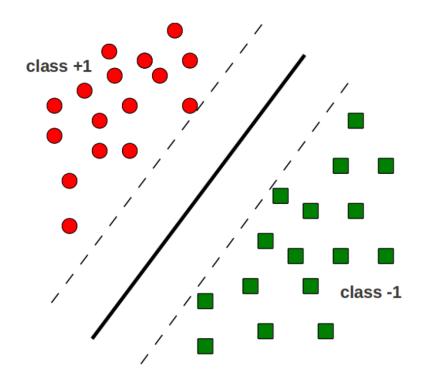
Back to linear classification

 So far: we've seen that kernels can help capture non-linear patterns in data while keeping the advantages of a linear classifier

- Support Vector Machines
 - A hyperplane-based classification algorithm
 - Highly influential
 - Backed by solid theoretical grounding (Vapnik & Cortes, 1995)
 - Easy to kernelize

The Maximum Margin Principle

 Find the hyperplane with maximum separation margin on the training data



Margin of a data set D

$$margin(\mathbf{D}, w, b) = \begin{cases} \min_{(x,y) \in \mathbf{D}} y(w \cdot x + b) & \text{if } w \text{ separates } \mathbf{D} \\ -\infty & \text{otherwise} \end{cases}$$
(3.8)

Distance between the hyperplane (w,b) and the nearest point in D

$$margin(\mathbf{D}) = \sup_{\boldsymbol{w}, b} margin(\mathbf{D}, \boldsymbol{w}, b)$$
(3.9)

Largest attainable margin on D

Support Vector Machine (SVM)

A hyperplane based linear classifier defined by w and b

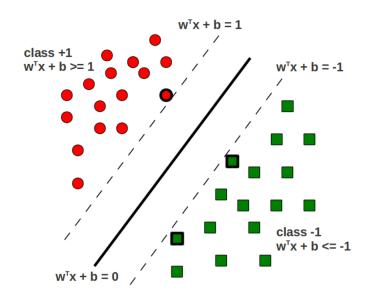
Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$

Given: Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$

Goal: Learn w and b that achieve the maximum margin

Characterizing the margin

Let's assume the entire training data is correctly classified by (w,b) that achieve the maximum margin



Assume the hyperplane is such that

•
$$\mathbf{w}^T \mathbf{x}_n + b \ge 1$$
 for $y_n = +1$

•
$$\mathbf{w}^T \mathbf{x}_n + b \leq -1$$
 for $y_n = -1$

• Equivalently,
$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$$

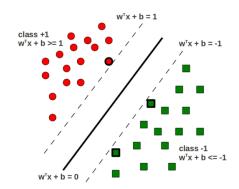
 $\Rightarrow \min_{1 \le n \le N} |\mathbf{w}^T\mathbf{x}_n + b| = 1$

The hyperplane's margin:

$$\gamma = \min_{1 \le n \le N} \frac{|\mathbf{w}^T \mathbf{x}_n + b|}{||\mathbf{w}||} = \frac{1}{||\mathbf{w}||}$$

The Optimization Problem

We want to maximize the margin $\gamma = \frac{1}{||\mathbf{w}||}$



Maximizing the margin $\gamma = \min |\mathbf{w}|$ (the norm) Our optimization problem would be:

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$, $n = 1, ..., N$

Large Margin = Good Generalization

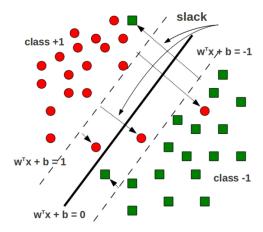
- Intuitively, large margins mean good generalization
 - Large margin => small ||w||
 - small ||w|| => regularized/simple solutions
- (Learning theory gives a more formal justification)

SVM in the non-separable case

no hyperplane can separate the classes perfectly

- We still want to find the max margin hyperplane, but
 - We will allow some training examples to be misclassified
 - We will allow some training examples to fall within the margin region

SVM in the non-separable case



Recall: For the separable case (training loss = 0), the constraints were:

$$y_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1 \quad \forall n$$

For the non-separable case, we relax the above constraints as:

$$y_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1-\xi_n \quad \forall n$$

 ξ_n is called slack variable (distance \mathbf{x}_n goes past the margin boundary)

$$\xi_n \geq 0, \forall n$$
, misclassification when $\xi_n > 1$

SVM Optimization Problem

Non-separable case: We will allow misclassified training examples

- .. but we want their number to be minimized \Rightarrow by minimizing the sum of slack variables $(\sum_{n=1}^{N} \xi_n)$
- The optimization problem for the non-separable case

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2} + C \sum_{n=1}^{N} \xi_n$$

subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1 - \xi_n, \quad \xi_n \ge 0 \qquad n = 1, \dots, N$

- C hyperparameter dictates which term dominates the minimization
- Small C => prefer large margins and allows more misclassified examples
- Large C => prefer small number of misclassified examples, but at the expense of a small margin