Kernels, SVMs

CMSC 422
SOHEIL FEIZI

sfeizi@cs.umd.edu

Slides adapted from MARINE CARPUAT

mailto:marine@cs.umd.edu

Today’s topics

* Kernelized Perceptron

e SVMs

The Kernel Trick

* Rewrite learning algorithms so they only depend on
dot products between two examples

* Replace dot product ¢(x) ' ¢(z)
by kernel function k(x, z)
which computes the dot product implicitly

Commonly Used Kernel Functions

Linear (trivial) Kernel:
k(x,z) = x 'z (mapping function ¢ is identity - no mapping)

Quadratic Kernel:

k(x,z) = (x'2)? or (14 x'z)?
Polynomial Kernel (of degree d):

k(x,z) = (x"z)? or (1+x'z)
Radial Basis Function (RBF) Kernel:

k(x,z) = exp[—7[]x — z|?]

The Kernel Trick

* Rewrite learning algorithms so they only depend on
dot products between two examples

* Replace dot product ¢(x) ' ¢(z)
by kernel function k(x, z)
which computes the dot product implicitly

“Kernelizing” the perceptron

Naive approach: let’s explicitly train a perceptron in
the new feature space

Algorithm 28 PERCEPTRONTRAIN(D, Maxlter)
w4+ 0,b+o0 // initialize weights and bias
. for iter = 1 ... MaxlIter do

for all (x,y) € D do

3

" a+ w-¢(x)+0b /I compute activation for this example

5 if ya < o then

6 w < w+ Yy P(x) // update weights

7 b<—b+y // update bias

8: end if

« end for 4)

.. end for Can we apply the Kernel trick?

.« return w, b Not yet, we need to rewrite the algorithm using
dot products between examples

\ J

“Kernelizing” the perceptron
* Perceptron Representer Theorem

“During a run of the perceptron algorithm, the weight vector

w can always be represented as a linear combination of the
expanded training data”

Proof by induction
(in CIML)

“Kernelizing” the perceptron

We can use the perceptron representer theorem to compute
activations as a dot product between examples

w-d(x)+b= (Zocncl)(xn)) ~p(x) + b definition of w
(9-6)
=) ay {cp(xn) -4>(x)] +b dot products are linear

n

(9-7)

“Kernelizing” the perceptron

Algorithm 29 KERNELIZEDPERCEPTRONTRAIN(D, Maxlter)

a4 0,b<+o0

.. for iter = 1 ... Maxlter do

s forall (x,,,y,) € Ddo

// initialize coefficients and bias

" a< Y, 0mP(Xm) d(x,)+0b // compute activation for this example
5 if y,a < othen

6: Ky < &y + Yp // update coefficients
7 b<b+y // update bias
s: end if

o end for /- Same training algorithm, but

o end for

x return «, b

doesn’t explicitly refers to weights w anymore
only depends on dot products between examples

_

We can apply the kernel trick!

~

Kernel Methods

* Goal: keep advantages of linear models, but
make them capture non-linear patterns in
datal

e How?

— By mapping data to higher dimensions where it
exhibits linear patterns

— By rewriting linear models so that the mapping
never needs to be explicitly computed

Discussion

e Other algorithms can be kernelized:

— See CIML for K-means

e Do Kernels address all the downsides of
“feature explosion”?

— Helps reduce computation cost during training

— But overfitting remains an issue

What you should know

e Kernel functions

— What they are, why they are useful, how they relate to
feature combination

* Kernelized perceptron
— You should be able to derive it and implement it

Support Vector
Machines

Back to linear classification

e So far: we've seen that kernels can help capture
non-linear patterns in data while keeping the
advantages of a linear classifier

e Support Vector Machines
— A hyperplane-based classification algorithm
— Highly influential

— Backed by solid theoretical grounding (Vapnik & Cortes,
1995)

— Easy to kernelize

The Maximum Margin Principle

* Find the hyperplane with maximum
separation margin on the training data

@ /
O /
class +1 ®o_ O
O. /
@ @ | 4 /
.. / /.
® 0
° H B
/
o g B

H B B
/
U [class -1

Margin of a data set D

margin(D,w,b) = { MNwyepy(w ¥+b) if wseparates D o
—00 otherwise
Distance between the
hyperplane (w,b) and
the nearest point in D
margin(D) = sup margin(D, w, b) (3.9)

w,b

Largest attainable margin on D

Support Vector Machine (SVM)

A hyperplane based linear classifier defined by w and b
Prediction rule: y = sign(w’x + b)
Given: Training data {(x1,v1),...,(Xn, yn)}

Goal: Learn w and b that achieve the maximum margin

Characterizing the margin

Let’s assume the entire training data is correctly classified by
(w,b) that achieve the maximum margin

o Vel @ Assume the hyperplane is such that
\(;\:g)fi;lxl.. .. @ // \;vTx+b:-1 9 WTXn _|_ b Z]. for _yn — _'_].
& S o w'x,+b< —1fory,=—1
HE B

o Equivalently, y,(w'x, + b) >1

EE : T
= Mini<,<y W' X, + b| =1
EEE
0 : ' -
class1 @ The hyperplane’s margin:
0

Y= MINI<p<N o — T

The Optimization Problem

Maximizing the margin v = minimizing ||w|| (the norm)

Our optimization problem would be:

2
Minimize f(w,b) = |“;||

subject to y,(w’x, + b) > 1, n=1,....N

Large Margin = Good Generalization

* Intuitively, large margins mean good generalization
— Large margin =>small | |w] |

— small | |w]| | => regularized/simple solutions

e (Learning theory gives a more formal justification)

SVM in the non-separable case

* no hyperplane can separate the classes perfectly

* We still want to find the max margin hyperplane, but
— We will allow some training examples to be misclassified

— We will allow some training examples to fall within the
margin region

SVM in the non-separable case

Recall: For the separable case (training loss = 0), the constraints were:

y,,(wa,, +b)>1 Vn
For the non-separable case, we relax the above constraints as:

y,,(wan +b)>1-&, Vn

¢, is called slack variable (distance x,, goes past the margin boundary)

&, > 0,Vn, misclassification when &, > 1

SVM Optimization Problem

Non-separable case: We will allow misclassified training examples

@ .. but we want their number to be minimized
= by minimizing the sum of slack variables {Zle €n)

The optimization problem for the non-separable case

C hyperparameter dictates which term dominates the minimization

* Small C => prefer large margins and allows more misclassified
examples

* Large C => prefer small number of misclassified examples, but at
the expense of a small margin

