SVMs II **CMSC 422** **SOHEIL FEIZI** sfeizi@cs.umd.edu ## Today's topics SVMs Final project presentations start on Thursday Course evals https://www.CourseEvalUM.umd.edu ## Support Vector Machine (SVM) A hyperplane based linear classifier defined by w and b Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$ **Given:** Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$ **Goal:** Learn w and b that achieve the maximum margin ## Characterizing the margin Let's assume the entire training data is correctly classified by (w,b) that achieve the maximum margin Assume the hyperplane is such that • $$\mathbf{w}^T \mathbf{x}_n + b \ge 1$$ for $y_n = +1$ • $$\mathbf{w}^T \mathbf{x}_n + b \leq -1$$ for $y_n = -1$ • Equivalently, $$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$$ $\Rightarrow \min_{1 \le n \le N} |\mathbf{w}^T\mathbf{x}_n + b| = 1$ The hyperplane's margin: $$\gamma = \min_{1 \le n \le N} \frac{|\mathbf{w}^T \mathbf{x}_n + b|}{||\mathbf{w}||} = \frac{1}{||\mathbf{w}||}$$ ## The Optimization Problem We want to maximize the margin $\gamma = \frac{1}{||\mathbf{w}||}$ Maximizing the margin $\gamma = \min |\mathbf{w}|$ (the norm) Our optimization problem would be: Minimize $$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$ subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$, $n = 1, ..., N$ ### Large Margin = Good Generalization - Intuitively, large margins mean good generalization - Large margin => small ||w|| - small ||w|| => regularized/simple solutions - (Learning theory gives a more formal justification) ## Solving the SVM Optimization Problem Our optimization problem is: Minimize $$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$ subject to $1 \le y_n(\mathbf{w}^T \mathbf{x}_n + b), \qquad n = 1, ..., N$ Introducing Lagrange Multipliers α_n ($n = \{1, ..., N\}$), one for each constraint, leads to the Lagrangian: Minimize $$L(\mathbf{w}, b, \alpha) = \frac{||\mathbf{w}||^2}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(\mathbf{w}^T \mathbf{x}_n + b)\}$$ subject to $\alpha_n \ge 0$; $n = 1, \dots, N$ ## Solving the SVM Optimization Problem Take (partial) derivatives of L_P w.r.t. **w**, b and set them to zero $$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n, \quad \frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^N \alpha_n y_n = 0$$ Substituting these in the Primal Lagrangian L_P gives the Dual Lagrangian Maximize $$L_D(\mathbf{w}, b, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (\mathbf{x}_m^T \mathbf{x}_n)$$ subject to $\sum_{n=1}^{N} \alpha_n y_n = 0$, $\alpha_n \ge 0$; $n = 1, \dots, N$ ## Solving the SVM Optimization Problem Take (partial) derivatives of L_P w.r.t. **w**, b and set them to zero A Quadratic Program for A Quadratic Program for which many off-the-shelf solvers exist $$= \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n, \quad \frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0$$ Substituting the the Primal Lagrangian L_P gives the Dual Lagrangian Maximize $$L_D(\mathbf{w}, b, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (\mathbf{x}_m^T \mathbf{x}_n)$$ subject to $\sum_{n=1}^{N} \alpha_n y_n = 0$, $\alpha_n \ge 0$; $n = 1, \dots, N$ #### SVM: the solution! Once we have the α_n 's, **w** and *b* can be computed as: $$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$ $$b = -\frac{1}{2} \left(\min_{n:y_n = +1} \mathbf{w}^T \mathbf{x}_n + \max_{n:y_n = -1} \mathbf{w}^T \mathbf{x}_n \right)$$ **Note:** Most α_n 's in the solution are zero (sparse solution) - Reason: Karush-Kuhn-Tucker (KKT) conditions - For the optimal α_n 's $$\alpha_n\{1-y_n(\mathbf{w}^T\mathbf{x}_n+b)\}=0$$ - α_n is non-zero only if \mathbf{x}_n lies on one of the two margin boundaries, i.e., for which $y_n(\mathbf{w}^T\mathbf{x}_n + b) = 1$ - These examples are called support vectors - Support vectors "support" the margin boundaries ### SVM in the non-separable case no hyperplane can separate the classes perfectly - We still want to find the max margin hyperplane, but - We will allow some training examples to be misclassified - We will allow some training examples to fall within the margin region ## SVM in the non-separable case Recall: For the separable case (training loss = 0), the constraints were: $$y_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1 \quad \forall n$$ For the non-separable case, we relax the above constraints as: $$y_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1-\xi_n \quad \forall n$$ ξ_n is called slack variable (distance \mathbf{x}_n goes past the margin boundary) $$\xi_n \geq 0, \forall n$$, misclassification when $\xi_n > 1$ ## **SVM Optimization Problem** Non-separable case: We will allow misclassified training examples • .. but we want their number to be minimized \Rightarrow by minimizing the sum of slack variables $(\sum_{n=1}^{N} \xi_n)$ The optimization problem for the non-separable case Minimize $$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2} + C \sum_{n=1}^{N} \xi_n$$ subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1 - \xi_n, \quad \xi_n \ge 0 \qquad n = 1, \dots, N$ - C hyperparameter dictates which term dominates the minimization - Small C => prefer large margins and allows more misclassified examples - Large C => prefer small number of misclassified examples, but at the expense of a small margin #### Soft SVM Same optimization as: $$\min_{\mathbf{w},b} \frac{\|\mathbf{w}\|^2}{2} + C \sum_{n=1}^{N} \max \left\{ 1 - y_n(\mathbf{w}^t \mathbf{x}_n), 0 \right\}$$ Hinge loss! - Why? - Have you seen this loss function before? ### Our goal in 422 Learning is the process of obtaining expertise from experience Our goal: learning "Machine Learning" ## Beyond 422... - Machine learning is everywhere - Many opportunities to create new high impact applications - But challenging issues arise - Fairness - Robustness - Interpretability - Privacy **—** ... # What you should know: Linear Models - What are linear models? - a general framework for binary classification - how optimization objectives are defined - loss functions and regularizers - separate model definition from training algorithm (Gradient Descent) # What you should know: Gradient Descent #### Gradient descent - a generic algorithm to minimize objective functions - what are the properties of the objectives for which it works well? - subgradient descent (ie what to do at points where derivative is not defined) - why choice of step size, initialization matter ## What you should know: Probabilistic Models - The Naïve Bayes classifier - Conditional independence assumption - How to train it? - How to make predictions? - How does it relate to other classifiers we know? - Fundamental Machine Learning concepts - iid assumption - Bayes optimal classifier - Maximum Likelihood estimation ## What you should know: Neural Networks - What are Neural Networks? - Multilayer perceptron - How to make a prediction given an input? - Forward propagation: Matrix operations + non-linearities - Why are neural networks powerful? - Universal function approximators! - How to train neural networks? - The backpropagation algorithm - How to step through it, and how to derive update rules ### What you should know: PCA - Principal Components Analysis - Goal: Find a projection of the data onto directions that maximize variance of the original data set - PCA optimization objectives and resulting algorithm - Why this is useful! # What you should know: Kernels - Kernel functions - What they are, why they are useful, how they relate to feature combination - Kernelized perceptron - You should be able to derive it and implement it ## What you should know: SVMs - What are Support Vector Machines - Hard margin vs. soft margin SVMs - How to train SVMs - Which optimization problem we need to solve - Geometric interpretation - What are support vectors and what is their relation with parameters **w**,b? - How do SVM relate to the general formulation of linear classifiers - Why/how can SVMs be kernelized