Canny Edge Detection

Mohammad Nayeem Teli

Optimal Edge Detection: Canny

Assume:

- Linear filtering
- Additive iid Gaussian noise

Edge detector should have:

- Good Detection. Filter responds to edge, not noise.
- Good Localization: detected edge near true edge.
- Single Response: one per edge.

Optimal Edge Detection: Canny (continued)

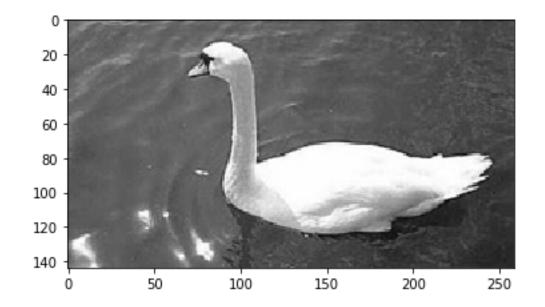
Optimal Detector is approximately Derivative of Gaussian.

Detection/Localization trade-off

- More smoothing improves detection
- And hurts localization.

This is what you might guess from (detect change) + (remove noise)

- 1. Smoothing (noise reduction)
- 2. Find derivatives (gradients)
- 3. Find magnitude and orientation of gradient
- 4. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 5. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them



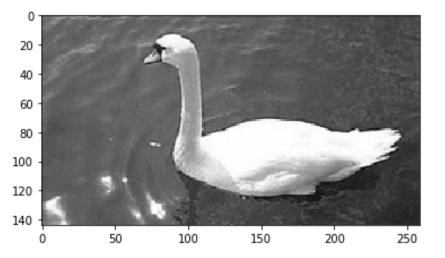
original image

1. Smoothing (noise reduction)

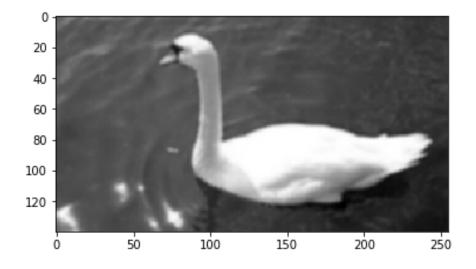
5 x 5 Gaussian kernel

$$\frac{1}{2\pi\sigma^2}e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Filter :
$$(2k + 1) \times (2k + 1)$$
 $-2 \le k \le 2$ $x = i - (k + 1); y = j - (k + 1)$ $1 \le i, j \le 2k + 1$



original image



smoothed image

[-1., 0., 1.] [-2., 0., 2.]

[-1., 0., 1.]

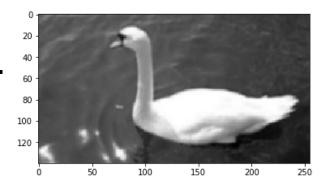
 h_x

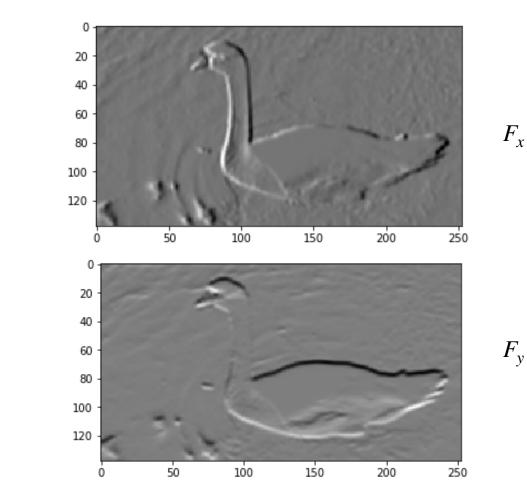
1., 2., 1.] 0., 0., 0.]

[-1., -2., -1.]

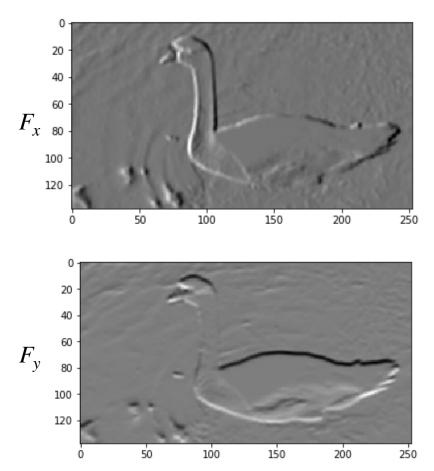
 h_{v}

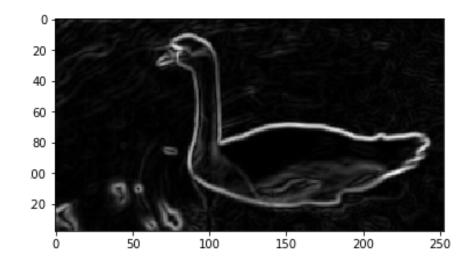
- 1. Smoothing (noise reduction)
- 2. Find derivatives (gradients)





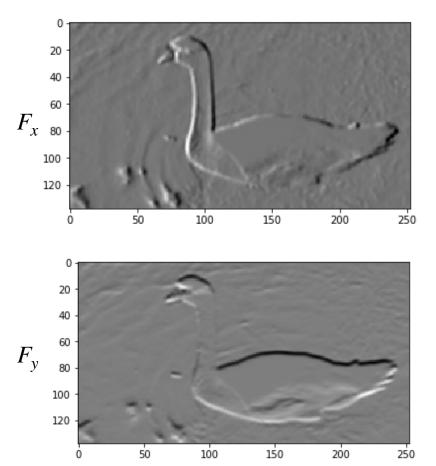
- 1. Smoothing (noise reduction)
- 2. Find derivatives (gradients)
- 3. Find magnitude and orientation of gradient

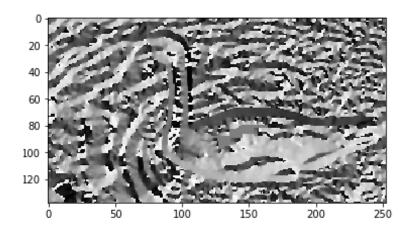




$$G = \sqrt{(F_x^2 + F_y^2)}$$

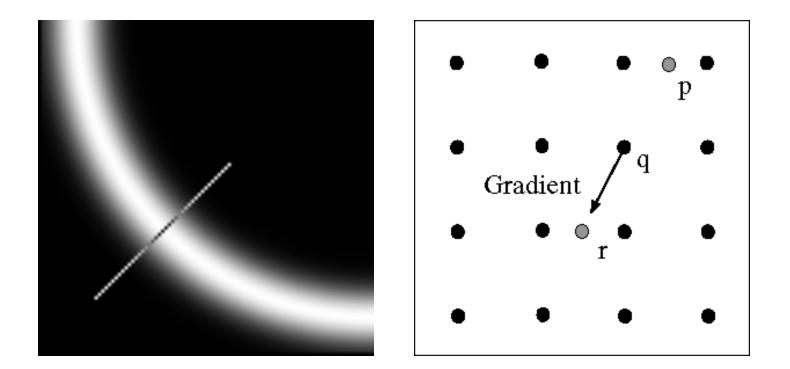
- 1. Smoothing (noise reduction)
- 2. Find derivatives (gradients)
- 3. Find magnitude and orientation of gradient





$$\theta = tan^{-1} \left(\frac{F_y}{F_x} \right)$$

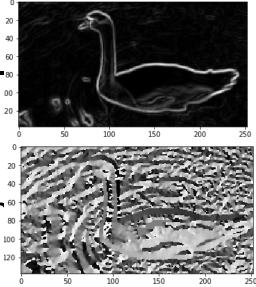
Non-maximum suppression



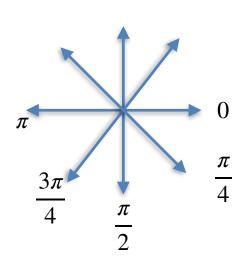
Check if pixel is local maximum along gradient direction

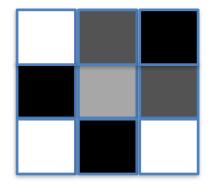
• requires checking interpolated pixels p and r

- 1. Smoothing (noise reduction)
- 2. Find derivatives (gradients)
- 3. Find magnitude and orientation
- 4. Non-maximum suppression:

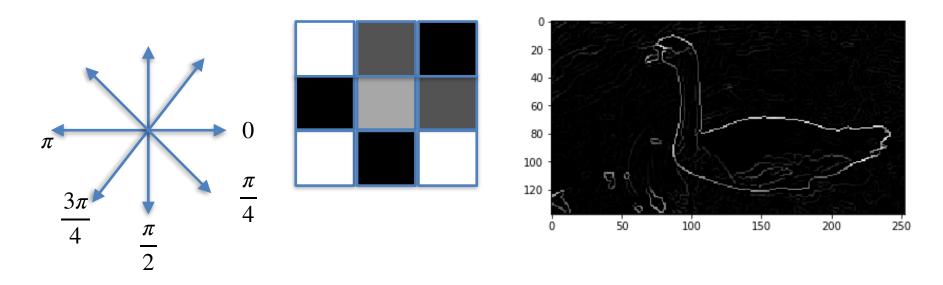


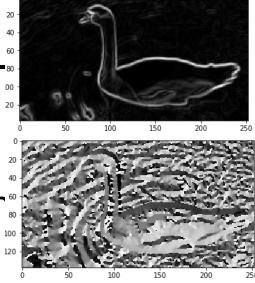
Thin multi-pixel wide "ridges" down to single pixel width





- 1. Smoothing (noise reduction)
- 2. Find derivatives (gradients)
- 3. Find magnitude and orientation
- 4. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width





- 1. Smoothing (noise reduction)
- 2. Find derivatives (gradients)
- 3. Find magnitude and orientation of gradient
- 4. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 5. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high

Upper threshold based on the max intensity

lower threshold based on some percentage of the upper threshold

Canny edge detector - double threshold

- 1. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high

Upper threshold based on the max intensity

lower threshold based on some percentage of the upper threshold

Example:

```
Upper threshold - 90% of max lower threshold - 35%
```

<= lower threshold	lower threshold < intensity < upper threshold	>= upper threshold
irrelevant	weak	strong

Canny edge detector - double threshold

- 1. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high

Upper threshold based on the max intensity

lower threshold based on some percentage of the upper threshold

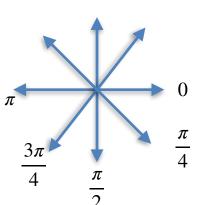
Example:

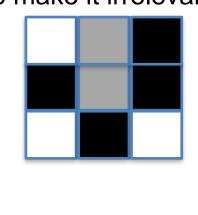
```
Upper threshold - 90% of max lower threshold - 35%
```

threshold	lower threshold < intensity < upper threshold	>= upper threshold
irrelevant = 0	weak = low threshold	strong= 255

Canny edge detector - Hysteresis

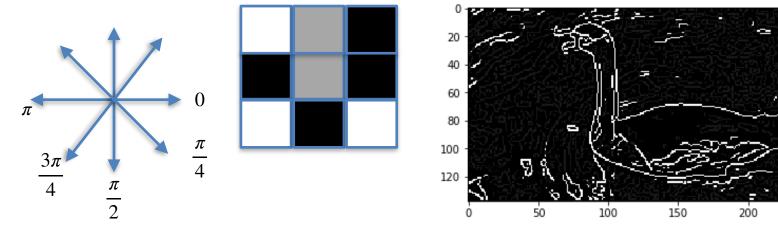
- 1. Smoothing (noise reduction)
- 2. Find derivatives (gradients)
- 3. Find magnitude and orientation of gradient
- 4. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 5. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - replace with the strong edge if any of the neighboring pixels is strong, else make it irrelevant.





Canny edge detector - Hysteresis

- 1. Smoothing (noise reduction)
- 2. Find derivatives (gradients)
- 3. Find magnitude and orientation of gradient
- 4. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 5. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - replace with the strong edge if any of the neighboring pixels is strong, else make it irrelevant.

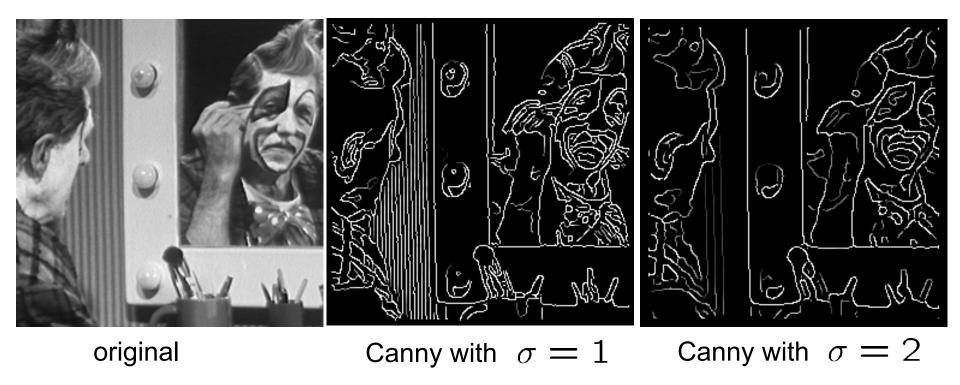


250

Canny Edge Detection (Example)

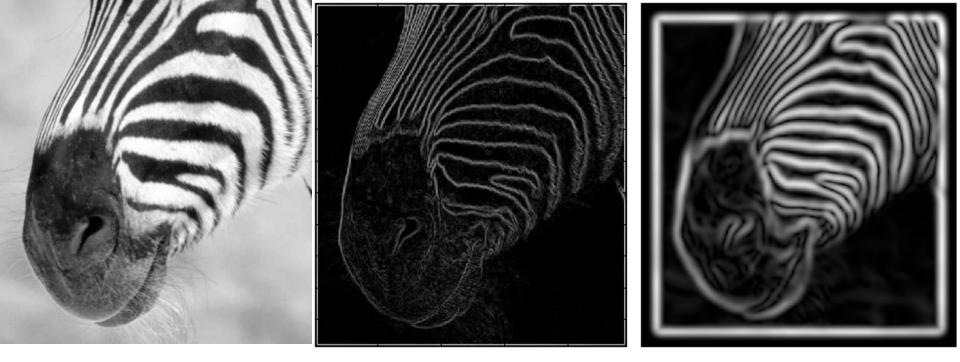
courtesy of G. Loy

Effect of σ (Gaussian kernel size)



The choice of σ depends on desired behavior

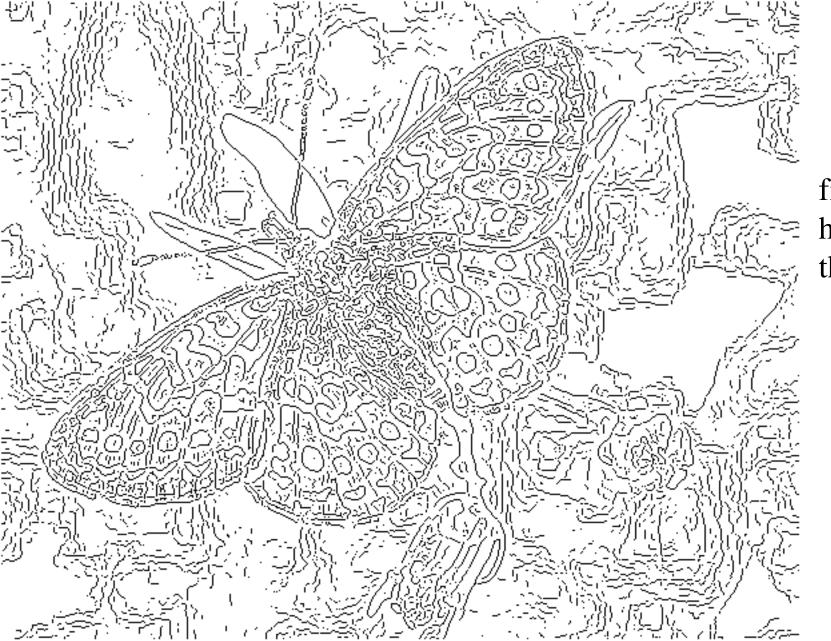
- large σ detects large scale edges
- small σ detects fine features



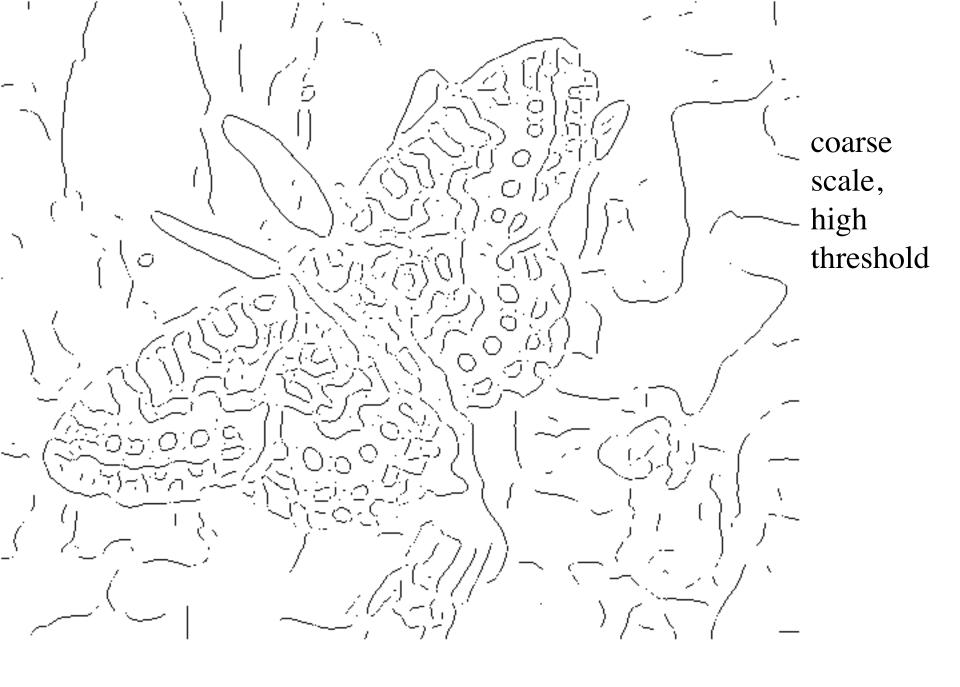
Scale

Smoothing Eliminates noise edges. Makes edges smoother. Removes fine detail.

(Forsyth & Ponce)



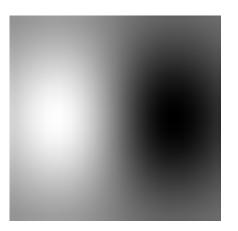
fine scale high threshold



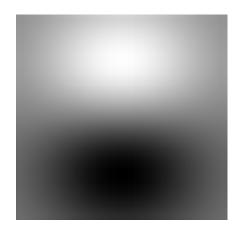
Filters are templates

- Applying a filter at some point can be seen as taking a dot-product between the image and some vector
- Filtering the image is a set of dot products

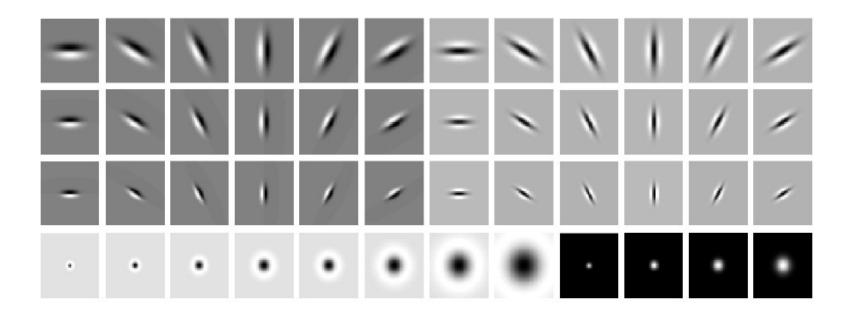
- Insight
 - filters look like the effects they are intended to find
 - filters find effects they look like



Computer Vision - A Modern Approach Set: Linear Filters Slides by D.A. Forsyth

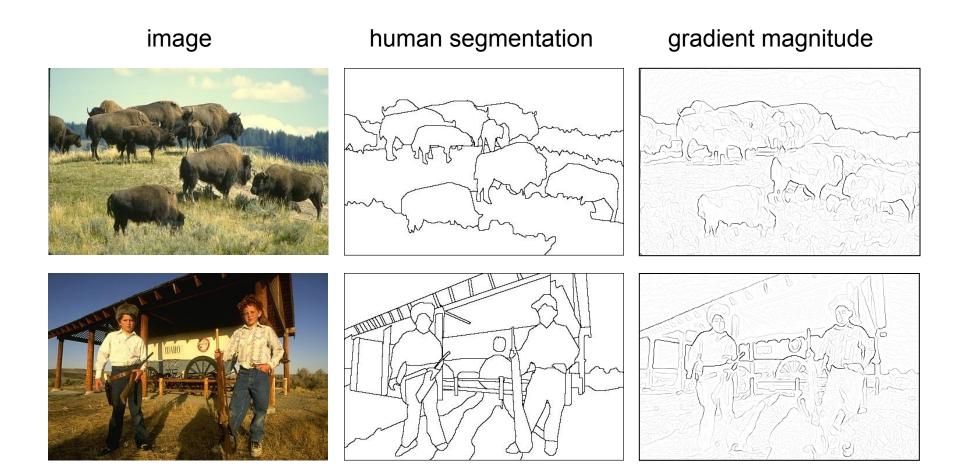


Filter Bank



Leung & Malik, Representing and Recognizing the Visual Apperance using 3D Textons, IJCV 2001

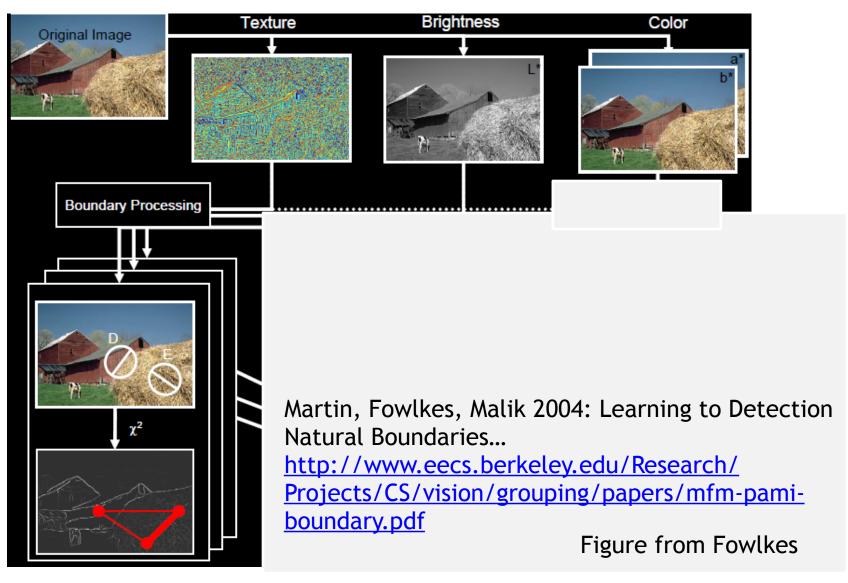
Learning to detect boundaries



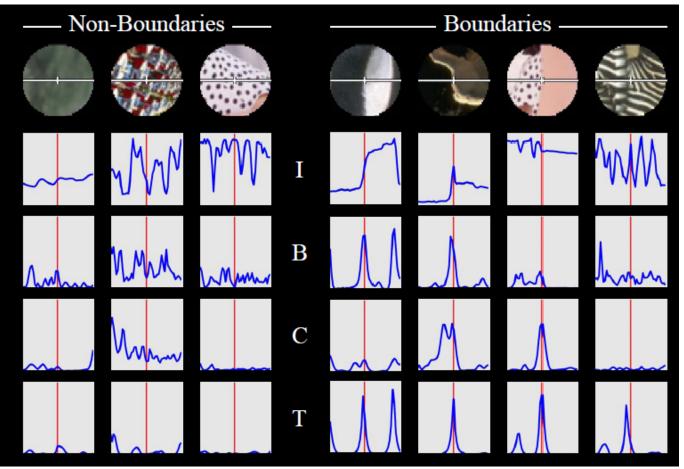
Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB boundary detector



pB Boundary Detector



- Estimate Posterior probability of boundary passing through centre point based on local patch based features

- Using a Supervised Learning based framework

Results

Human (0.95)

Results

