

SUPPORT VECTOR
MACHINES (SVM)

O
O O
O
O
O
O
O
]
O
O
L]
O
O O

Find a linear hyperplane (decision boundary) that will separate the data

SUPPORT VECTOR
MACHINES

O
O O
O
®
O
O
O
O
O
O
0
O
O O

One possible solution

SUPPORT VECTOR

MACHINES

O
O O
\\\ O
T~~~
::\\\\
\\ \\\
\h\ -
Ll \§\\\\\\\\\\
~N O~
. \\ X \\\\\\
B ~ T >
~ S~ > Jd
~ o \\\\
~ ~
| SN
B ~
H
H H

Other possible solutions

SUPPORT VECTOR MACHINES

B1
O
O O
O
O
B, _ O
BT O
T . 2 -
O
O
O
O
O O

Which one is better? B, or B,? ?7??7???7?7?7??
How do you define better? ?7?7?7?7?7??7?7??

SUPPORT VECTOR MACHINES

B1
O
© O
O
O

o ‘\Jvt\\
L NG TEEREO b,
. b22

O

. .

. -.....l:]:]ar ..b11
] m .
b

12

Find hyperplane maximizes the margin - B, is better than B,

SUPPORT VECTOR MACHINES

O
o © O
7Teb=0 S
w-x+b=-1 0 w-x+b=+1

SUPPORT VECTOR
MACHINES

We want to maximize: Margin =

Which is equivalent to minimizing: L(w) = [[W]]?
2

But subject to the following constraints:

w-X+b>1ify =1
w-X+b<—1ify,=—1

This Is a constrained optimization problem
« Numerical approaches to solve it (e.g., quadratic programming)

SUPPORT VECTOR
MACHINES

What if the problem is not linearly separable?

\\\ O
\ = O
\\\ \ O
1.0 Yo
|
s Apply some sort
O of penalty
O — S
: [l

|

SUPPORT VECTOR
MACHINES

What if the problem is not linearly separable?
Introduce slack variables
Need to minimize:

Subject to:

NONLINEAR SUPPORT
VECTOR MACHINES

What if the decision boundary is not linear?

12

10 +

NONLINEAR SUPPORT
VECTOR MACHINES

Transform data into higher dimensional space

x10°

SVMS IN SCIKIT-LEARN

from sklearn import svm

X =110, 01, 1, 1]]
y = [0, 1]

clf = svm.SVC()
clf.fit(X, vy)

SVC(C=1.0, cache size=200, class weight=None, coef0=0.0,
decision function shape=None, degree=3, gamma='auto',
kernel="rbf', max iter=-1, probability=False,

random state=None, shrinking=True, tol=0.001,
verbose=False)

Lots of defaults used for hyperparameters — can use cross
validation to search for good ones

MODEL SELECTION IN
SCIKIT-LEARN

from sklearn.model selection import train test split
from sklearn.model selection import GridSearchCV
from sklearn.metrics import classification report

X train, X test, y train, y test =
train test split(X, y, test size=0.5, random state=0)

tuned parameters = [{'kernel': ['rbf'],
‘gamma': [le-3, le-4],
‘c': [1, 10, 100, 10001},
{'kernel'’': ['linear'],
‘c¢': [1, 10, 100, 100071}

MODEL SELECTION IN
SCIKIT-LEARN

clf = GridSearchCV(SVC(C=1),
tuned parameters,
cv=5,
scoring=‘precision’)
clf.fit(X train, y train)

y true, y pred = y test, clf.predict(X test)
print(classification report(y true, y pred))

