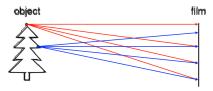
Geometric Transformations

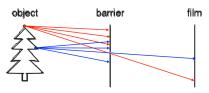
Let's design a camera



- Idea 1: put a piece of film in front of an object
- · Do we get a reasonable image?

Slide by Steve Seitz

Pinhole camera



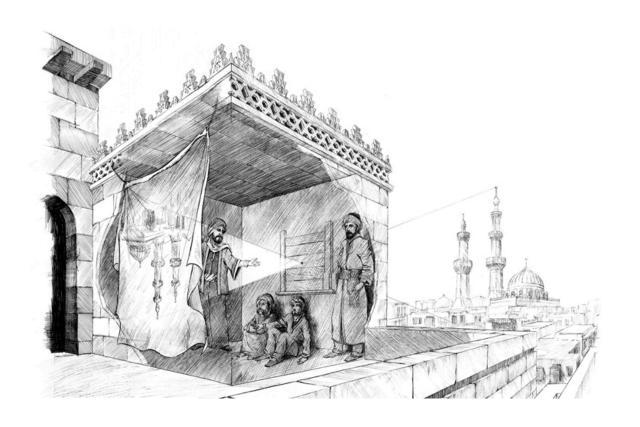
- · Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening is known as the aperture

Slide by Steve Seitz

Camera Obscura

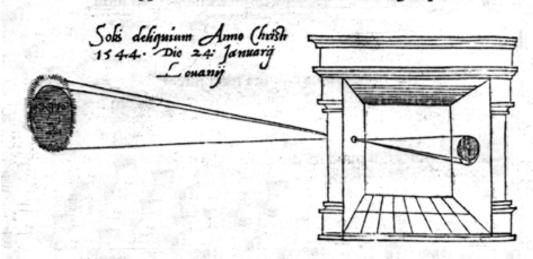
First Idea:Mo-Ti, China (470 BC to 390 BC)

First built: Ibn Al-Haytham or Alhazen, Iraq/Egypt (965 to 1039AD)



Camera Obscura

illum in tabula per radios Solis, quam in cœlo contingit: hoc est, si in cœlo superior pars deliquiù patiatur, in radiis apparebit inferior desicere, vt ratio exigit optica.



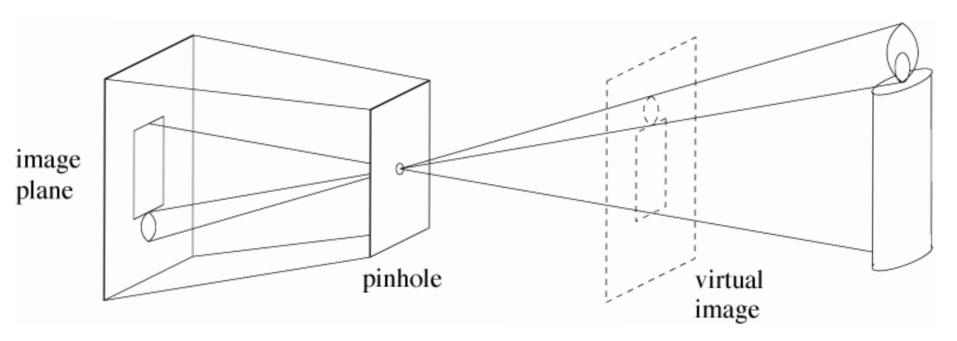
Sic nos exacte Anno . 1544 . Louanii eclipsim Solis observauimus, inuenimusq; deficere paulò plus q dex-

"When images of illuminated objects ... penetrate through a small hole into a very dark room ... you will see [on the opposite wall] these objects in their proper form and color, reduced in size ... in a reversed position, owing to the intersection of the rays".

Da Vinci

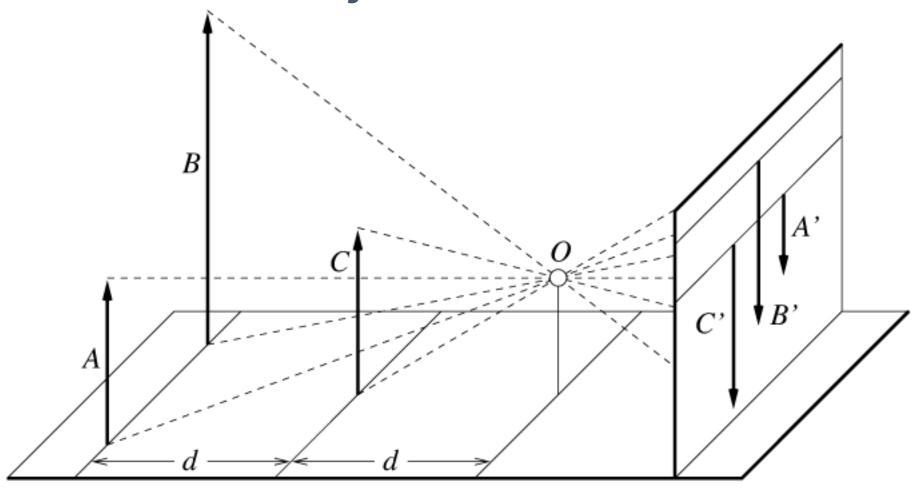
Pinhole cameras

- Abstract camera model - box with a small hole in it
- Pinhole cameras work in practice



(Forsyth & Ponce)

Distant objects are smaller

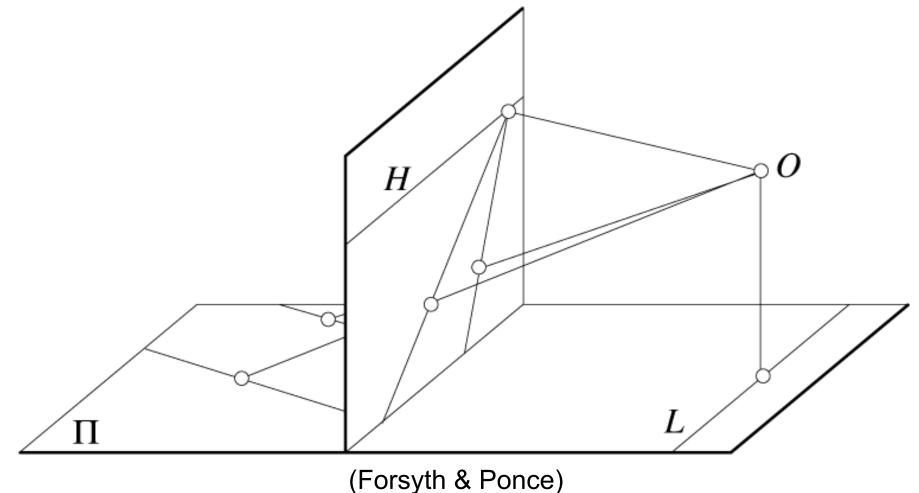


(Forsyth & Ponce)

Parallel lines meet

Parallel lines meet

Common to draw image plane in front of the focal point. Moving the image plane merely scales the image.

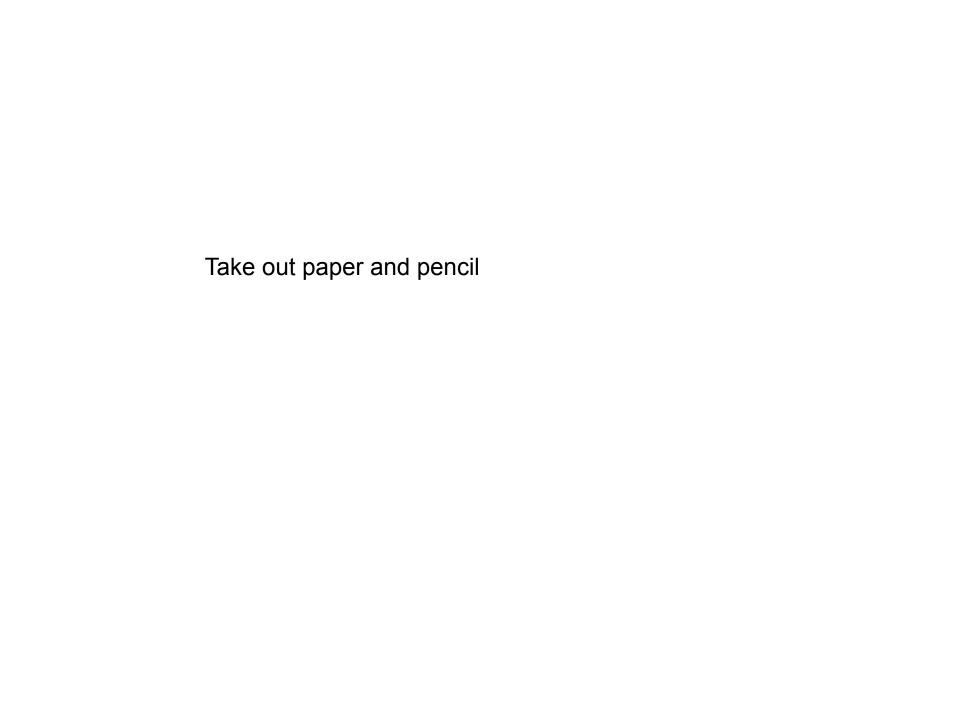


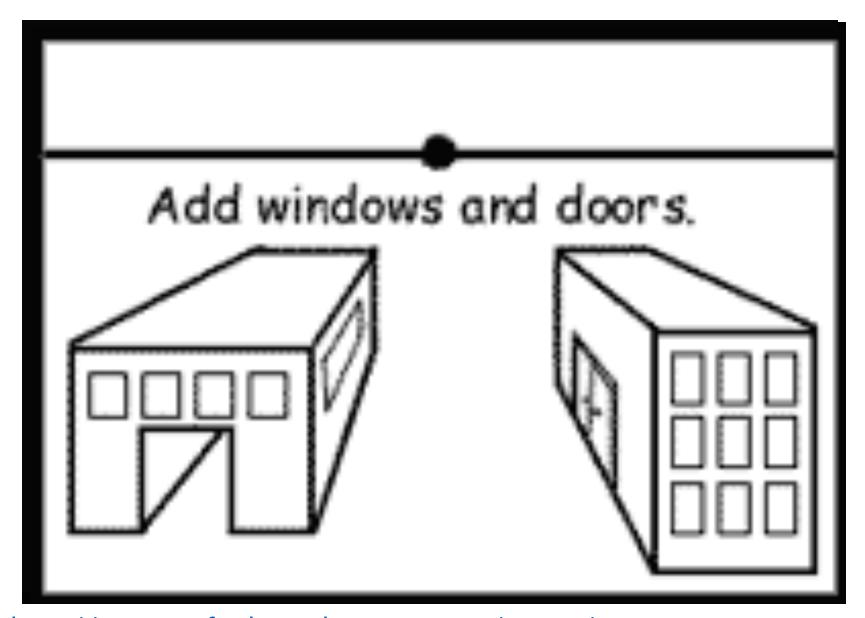
Vanishing points

- Each set of parallel lines meets at a different point
 - The vanishing point for this direction
- Sets of parallel lines on the same plane lead to collinear vanishing points.
 - The line is called the *horizon* for that plane

Properties of Projection

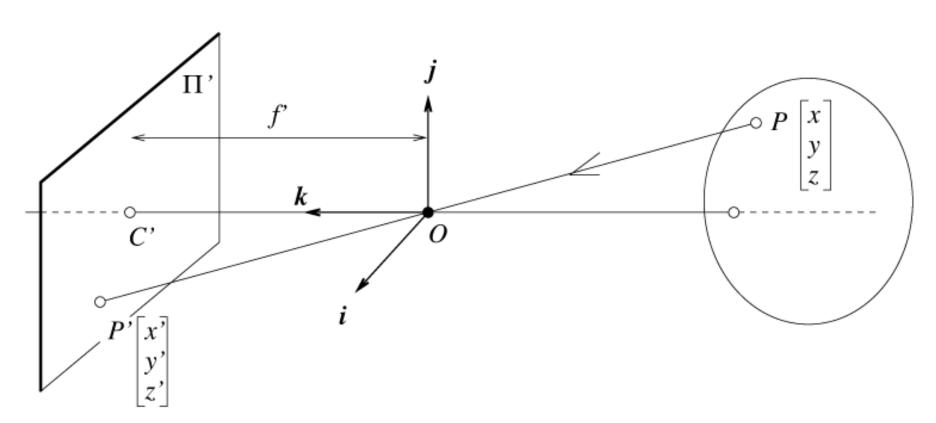
- Points project to points
- Lines project to lines
- Planes project to the whole image or a half image
- Angles are not preserved
- Degenerate cases
 - Line through focal point projects to a point.
 - Plane through focal point projects to line
 - Plane perpendicular to image plane projects to part of the image (with horizon).





http://www.sanford-artedventures.com/create/tech_1pt_perspective.html

The equation of projection



(Forsyth & Ponce)

The equation of projection

- Cartesian coordinates:
 - We have, by similar triangles, that

$$x' = f' \frac{x}{z}$$

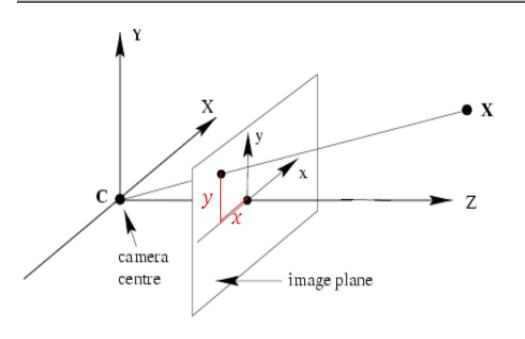
$$y' = f' \frac{y}{z}$$

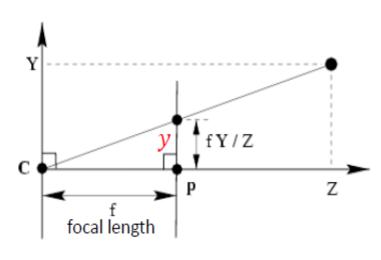
$$(x, y, z) \rightarrow (f' \frac{x}{z}, f' \frac{y}{z}, f')$$

 Ignore the third coordinate, and get

$$(x, y, z) \rightarrow (f' \frac{x}{z}, f' \frac{y}{z})$$

Pinhole camera model – in maths

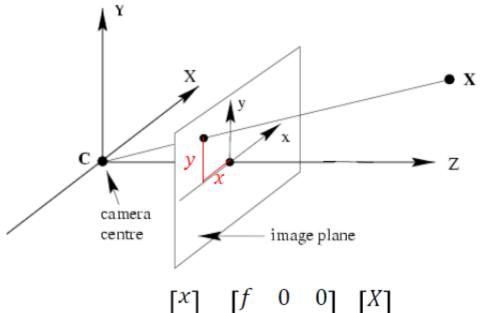


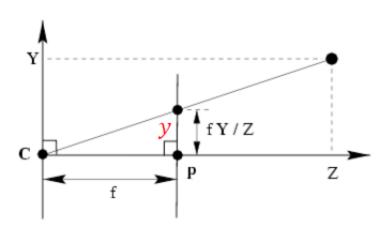


- Similar trinagles: $\frac{y}{f} = \frac{Y}{Z}$
- That gives: $y = f \frac{Y}{Z}$ and $x = f \frac{X}{Z}$

That gives:
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Pinhole camera model – in maths





That gives:

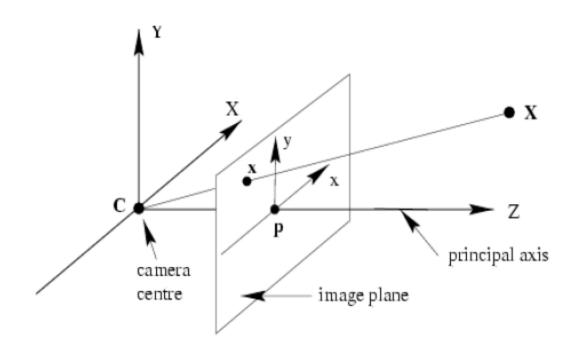
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
Calibration matrix K

In short $x = K\tilde{X}$ (here \tilde{X} means inhomogeneous coordinates)

Intrinsic Camera Calibration means we know K (we do that later)

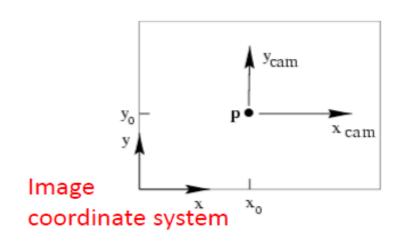
We can go from image points into the 3D world: $\tilde{X} = K^{-1} x$

Pinhole camera - definitions



- Principal axis: line from the camera center perpendicular to the image plane
- Normalized (camera) coordinate system: camera center is at the origin and the principal axis is the z-axis
- Principal point (p): point where principal axis intersects the image plane (origin of normalized coordinate system)

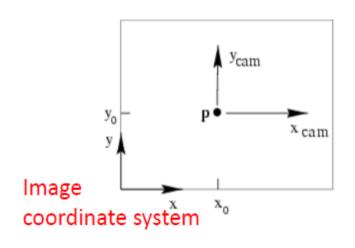
Principal Point



Principal point (p_x, p_y)

- Camera coordinate system: origin is at the principal point
- Image coordinate system: origin is in the corner In practice: principal point in center of the image

Adding principal point into K

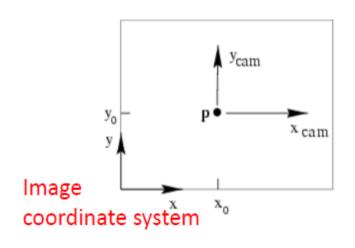


Principal point (p_x, p_y)

Projection with principal point :
$$y = f\frac{Y}{Z} + p_y = \frac{fY + Zp_y}{Z}$$
 and $x = f\frac{X}{Z} + p_x = \frac{fX + Zp_x}{Z}$

That gives:
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Adding principal point into K



Principal point (p_x, p_y)

Projection with principal point :
$$y = f\frac{Y}{Z} + p_y = \frac{fY + Zp_y}{Z}$$
 and $x = f\frac{X}{Z} + p_x = \frac{fX + Zp_x}{Z}$

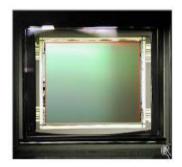
That gives:
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Intrinsic matrix, K

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & p_X \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

$$\begin{bmatrix} f & 0 & p_X \\ 0 & f & p_Y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & p_X \\ 0 & 1 & p_Y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Pixel Size and Shape



- m_x pixels per unit (m,mm,inch,...) in horizontal direction
- m_{ν} pixels per unit (m,mm,inch,...) in vertical direction
- s' skew of a pixel
- In practice (close to): m=1 s = 0

That gives:
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} m_x & s' & 0 \\ 0 & m_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Simplified to:
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} f & s & p_x \\ 0 & mf & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

f now in units of pixels

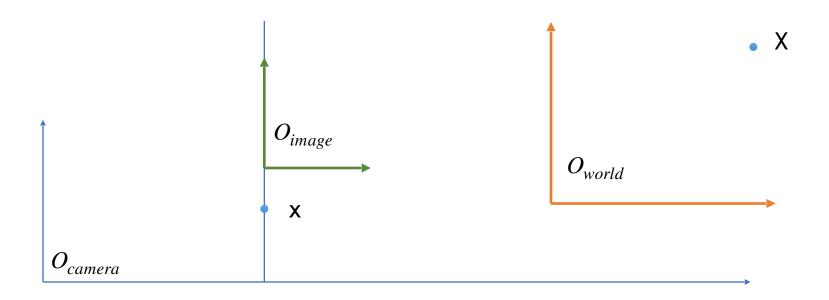
Final calibration matrix K

Camera intrinsic parameters - Summary

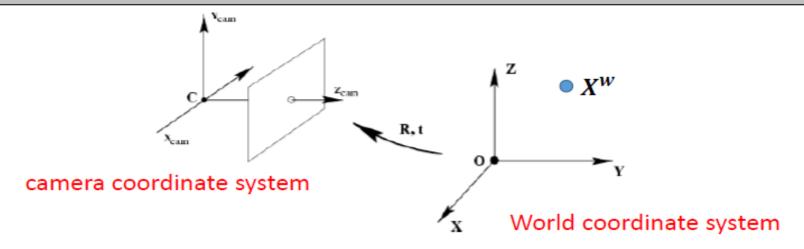
- Intrinsic parameters
 - Principal point coordinates (p_x, p_y)
 - Focal length f
 - Pixel magnification factors m
 - Skew (non-rectangular pixels) s

$$\boldsymbol{K} = \begin{bmatrix} f & s & p_x \\ 0 & mf & p_y \\ 0 & 0 & 1 \end{bmatrix}$$

Three different coordinate systems



Putting the camera into the world



Given a 3D homogenous point X^w in world coordinate system

Translate from world to camera coordinate system:

$$egin{array}{lll} \widetilde{X}^{c\prime} &=& \widetilde{X}^{w} - \widetilde{C} \ \widetilde{X}^{c\prime} &=& \underbrace{(I_{3 imes 3} \mid -\widetilde{C})}_{3 imes 4 \, \mathrm{matrix}} X^{w} & ext{where } I_{3 imes 3} \, ext{is 3x3 identity matrix} \end{array}$$

- 2) Rotate world coordinate system into camera coordinate system $\widetilde{X}^c = R(I_{3\times 3} \mid -\widetilde{C}) X^w$
- 3) Apply camera matrix

$$x = KR(I_{3\times 3} \mid -\tilde{C})X$$

Camera extrinsic (or external) parameters

- Transform a point from the world coordinate to the camera's coordinate system
- Translation and rotation

$$X_{c} = R(X_{w} - C_{w})$$

$$X_{c} = RX_{w} - RC_{w}$$

$$\begin{vmatrix} X_{c} \\ Y_{c} \\ Z_{c} \\ 1 \end{vmatrix} = \begin{bmatrix} R & -RC_{w} \\ 0 & 1 \end{bmatrix} \begin{vmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{vmatrix}$$

$$\begin{bmatrix} R & -RC_W \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I & -C_W \\ 0 & 1 \end{bmatrix}$$

Camera extrinsic (or external) parameters

$$\begin{bmatrix} X_C \\ Y_C \\ Z_C \\ 1 \end{bmatrix} = \begin{bmatrix} R & -RC_W \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_W \\ Y_W \\ Z_W \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} R & -RC_{\mathcal{W}} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I & -C_{\mathcal{W}} \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} R & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} I & -C_W \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -c_X \\ 0 & 1 & 0 & -C_Y \\ 0 & 0 & 1 & -C_Z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} I & -C_W \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -c_X \\ 0 & 1 & 0 & -C_Y \\ 0 & 0 & 1 & -C_Z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Camera extrinsic (or external) parameters

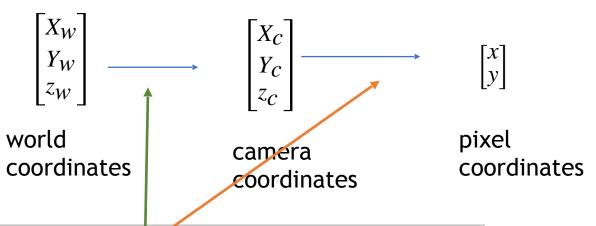
$$\begin{bmatrix} X_C \\ Y_C \\ Z_C \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -C_X \\ 0 & 1 & 0 & -C_Y \\ 0 & 0 & 1 & -C_Z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_W \\ Y_W \\ Z_W \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} X_C \\ Y_C \\ Z_C \\ 1 \end{bmatrix} = R(I_{3\times3} | -C_w) \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = K \begin{bmatrix} X_C \\ Y_C \\ Z_C \\ 1 \end{bmatrix}$$

$$K = \begin{bmatrix} f & s & p_{\chi} \\ 0 & mf & p_{y} \\ 0 & 0 & 1 \end{bmatrix}$$

Summary



Camera matrix

• Camera matrix
$$P$$
 is defined as:
$$x = KR(I_{3\times 3} | -\tilde{C})X$$

 $P(3 \times 4)$ camera matrix has 11 DoF

• In short we write: x = PX

Camera matrix

Camera matrix P is defined as:

$$x = KR(I_{3\times3} | -\tilde{C})X$$

$$P(3\times4) \text{ camera matrix has 11 DoF}$$

• In short we write: x = PX

Image of a Point

Homogeneous coordinates of a 3-D point p

$$X = [X, Y, Z, W]^T \in \mathbb{R}^4, \quad (W = 1)$$

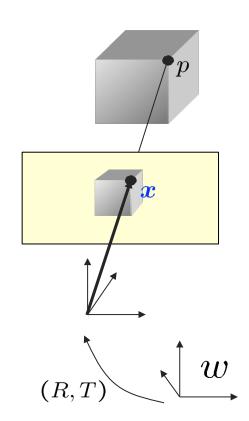
Homogeneous coordinates of its 2-D image

$$x = [x, y, z]^T \in \mathbb{R}^3, \quad (z = 1)$$

Projection of a 3-D point to an image plane

$$\lambda x = PX$$

$$\lambda \in \mathbb{R}, \, \mathbf{P} = [R, T] \in \mathbb{R}^{3 \times 4}$$



Camera parameters - Summary

Camera matrix P has 11 DoF

$$x = P X$$

 $x = K R (I_{3\times3} | -\tilde{C}) X$

 $\boldsymbol{K} = \begin{bmatrix} f & s & p_x \\ 0 & mf & p_y \end{bmatrix}$

- Intrinsic parameters
 - Principal point coordinates (p_x, p_y)
 - Focal length f
 - Pixel magnification factors m
 - Skew (non-rectangular pixels) s
- Extrinsic parameters
 - Rotation R (3DoF) and translation C (3DoF) relative to world coordinate system