EIGEN VALUES AND VECTORS
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EIGEN VECTOR -
PROPERTIES

» Eigen vectors can only be found for square matrices

* Not every square matrix has eigen vectors.

e Given an n x n matrix that does have eigenvectors, there are n of them

for example, given a 3 x 3 matrix, there are 3 eigenvectors.

* Even if we scale the vector by some amount, we still get the same
multiple




EIGEN VECTOR -
PROPERTIES

* Even if we scale the vector by some amount, we still get the same multiple
* Because all you’re doing is making it longer, not changing its direction.
» All the eigenvectors of a matrix are perpendicular or orthogonal.

* This means you can express the data in terms of these perpendicular
eigenvectors.

* Also, when we find eigenvectors we usually normalize them to length one.




EIGEN VALUES -
PROPERTIES

e Eigenvalues are closely related to eigenvectors.
* These scale the eigenvectors
e eigenvalues and eigenvectors always come in pairs.
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SPECTRAL THEOREM

Theorem: If X € R™" is symmetric matrix (meaning X’ = X),
then, there exist real numbers 1, ..., 1, (the eigenvalues)
and orthogonal, non-zero real vectors ¢, ¢,, ..., ¢

n

(the eigenvectors) such that foreachi =1,2,...,n:

Xp; = 4;




EXAMPLE

_[30 28
A= [28 30]

From spectral theorem:

Ap = A




EXAMPLE

_[30 28
A= [28 30]

From spectral theorem:
Ap =Ap = Ap — Al =0
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EXAMPLE

_[30 28
A= [28 30]

From spectral theorem: Agb = ﬂqb
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EXAMPLE

_[30 28
A= [28 30]

From spectral theorem: Agb = ﬂqb
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COVARIANCE

ln
CoviX,X)=— ) X?
X, X) n;

assuming X is mean centered (Mean 0)

[
Cov(X,X)=—XX
n




SPECTRAL THEOREM

If A € R™™ is symmetric matrix, then the ,n x n matrix AA”

and the m x m matrix A A are both symmetric

We can apply Spectral theorem to the matrices AA” and AT A

Question: How are the eigenvalues and the eigenvectors of these matrices related?




SPECTRAL THEOREM

Using Spectral theorem

(ATA)p = A¢p

Multiply both sides by X
AATA) G = Al

AAT(X¢) = AAg)

The matrices AAT and ATA share the same nonzero eigenvalues




SPECTRAL THEOREM

Using Spectral theorem
(ATA)p = A
AAT(Xp) = MAg)

Conclusion:
The matrices AAT and ATA share the same nonzero eigenvalues

To get an eigenvector of AAT from AT A multiply ¢ on the left by A




SPECTRAL THEOREM

Using Spectral theorem
(ATA)p = A
AAT(Ap) = MAg)

Conclusion:
The matrices AAT and ATA share the same nonzero eigenvalues
To get an eigenvector of AAT from ATA multiply ¢ on the left by A

Very powerful, particularly if number of observations, n, and the
number of features, m, are drastically different in size.

For PCA:
Cov(A,A) = AAT




SINGULAR VALUE DECOMPOSITION

Uy vyl

Theorem : A,.=U2 V.
A - Rectangular matrix, n X m
Columns of U are orthonormal eigenvectors of AAT

Columns of V are orthonormal eigenvectors of A’ A

> is a diagonal matrix containing the square roots of

eigenvalues from U or V in descending order




SVD - EXAMPLE
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Columns of U are orthonormal eigenvectors of AAT
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SVD - EXAMPLE
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— T
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Columns of V are orthonormal eigenvectors of A’ A

Vi=




SVD - EXAMPLE
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> is a diagonal matrix containing the square roots of
eigenvalues from U or V in descending order
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SVD - EXAMPLE
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