
SINGULAR VALUE DECOMPOSITION (SVD)/ 
PRINCIPAL COMPONENTS ANALYSIS (PCA)
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SVD - EXAMPLE
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U, S, VT = numpy . linalg . svd(img)



SVD - EXAMPLE
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full rank 600 300

100

50 20

10 U[: , k]S[: k]VT[: k, :]



PCA - INTRODUCTION
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X =

1 2 4
2 1 5
3 4 10
4 3 11
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PCA - INTRODUCTION
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PRINCIPAL COMPONENT ANALYSIS

• A technique to find the directions along which the points 
(set of tuples) in high-dimensional data line up best. 

• Treat a set of tuples as a matrix M and find the eigenvectors 
for MMT or MTM. 

• The matrix of these eigenvectors can be thought of as a 
rigid rotation in a high-dimensional space. 

• When this transformation is applied to the original data - the 
axis corresponding to the principal eigenvector is the one 
along which the points are most “spread out”.
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PRINCIPAL COMPONENT ANALYSIS

• When this transformation is applied to the original data - the 
axis corresponding to the principal eigenvector is the one 
along which the points are most “spread out”. 

• This axis is the one along which variance of the data is 
maximized. 

• Points can best be viewed as lying along this axis with small 
deviations from this axis. 

• Likewise, the axis corresponding the second eigenvector is 
the axis along which the variance of distances from the first 
axis is greatest, and so on.
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PRINCIPAL COMPONENT ANALYSIS
• Principal Component Analysis (PCA) is a dimensionality reduction 

method. 

• The goal is to embed data in high dimensional space, onto a small 
number of dimensions. 

• It most frequent use is in exploratory data analysis and 
visualization. 

• It can also be helpful in regression (linear or logistic) where we can 
transform input variables into a smaller number of predictors for 
modeling.
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PRINCIPAL COMPONENT ANALYSIS
• Mathematically, 
 
Given: Data set  
 
where,     is the vector of p variable values for the i-th observation.  
 
 
 
 
Return: 
 
Matrix  
 
of linear transformations that retain maximal variance. 

• You can think of the first vector      as a linear transformation that 
embeds observations into 1 dimension 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{x1, x2, . . . , xn}

xi

[ϕ1, ϕ2, . . . , ϕp]

ϕ1

Z1 = ϕ11X1 + ϕ21X2 + … + ϕp1Xp



PRINCIPAL COMPONENT ANALYSIS
• You can think of the first vector      as a linear transformation that 

embeds observations into 1 dimension 
 
 
 
 
where       is selected so that the resulting dataset       
  
has maximum variance. 

• In order for this to make sense, mathematically, data has to be 
centered 

• Each      has zero mean 
• Transformation vector       has to be normalized, i.e.,   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ϕ1

Z1 = ϕ11X1 + ϕ21X2 + … + ϕp1Xp

ϕ1 {zi, …, zn}

Xi
ϕ1

p

∑
j=1

ϕ2
j1 = 1



PRINCIPAL COMPONENT ANALYSIS
• In order for this to make sense, mathematically, data has to be 

centered 
• Each      has zero mean 
• Transformation vector       has to be normalized, i.e.,   

• We can find        by solving an optimization problem:  
 
 
 
 
 
 
Maximize variance but subject to normalization constraint.      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ϕ1

Xi p

∑
j=1

ϕ2
j1 = 1

ϕ1

max
ϕ11,ϕ21,…,ϕp1

1
n

n

∑
i=1 (

p

∑
j=1

ϕj1xij)
2

 s.t. 
p

∑
j=1

ϕ2
j1 = 1



PRINCIPAL COMPONENT ANALYSIS

• We can find        by solving an optimization problem:  
 
 
 
 
 
 
Maximize variance but subject to normalization constraint. 

• The second transformation,      is obtained similarly with the added  
 
constraint that       is orthogonal to         
 

• Taken together              define a pair of linear transformations of the  
 
data into 2 dimensional space  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ϕ1

max
ϕ11,ϕ21,…,ϕp1

1
n

n

∑
i=1 (

p

∑
j=1

ϕj1xij)
2

 s.t. 
p

∑
j=1

ϕ2
j1 = 1

ϕ2

ϕ2 ϕ1

[ϕ1, ϕ2]

Zn×2 = Xn×p[ϕ1, ϕ2]p×2



PRINCIPAL COMPONENT ANALYSIS

• Taken together              define a pair of linear transformations of the  
 
data into 2 dimensional space  
  
    

• Each of the columns of the Z matrix are called Principal 
components. 

• The units of the PCs are meaningless. 

• In practice we may also scale       to have unit variance. 

• In general if variables      are measured in different units(e.g., miles  
 
vs. liters vs. dollars), variables should be scaled to have unit  
 
variance.  
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[ϕ1, ϕ2]

Zn×2 = Xn×p[ϕ1, ϕ2]p×2

Xj

Xj
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(XT X)ϕ = λϕ

XXT(Xϕ) = λ(Xϕ)

Using Spectral theorem

The matrices XXT and XT X share the same nonzero eigenvalues

Conclusion:

To get an eigenvector of XXT from XT X multiply ϕ on the left by X

SPECTRAL THEOREM

Very powerful, particularly if number of observations, m, and the  
number of predictors, n, are drastically different in size.

Cov(X, X ) = XXTFor PCA:



EXAMPLE  - PCA
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X =

1 2
2 1
3 4
4 3

Eigen Values and Eigen Vectors?



EXAMPLE  - PCA
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X =

1 2
2 1
3 4
4 3

From spectral theorem:

(XT X)ϕ = λϕ

XT X = [1 2 3 4
2 1 4 3]

1 2
2 1
3 4
4 3

= [30 28
28 30]



EXAMPLE  - PCA
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X =

1 2
2 1
3 4
4 3

From spectral theorem:

(XT X)ϕ = λϕ ⟹ (XT X)ϕ − λIϕ = 0

[30 − λ 28
28 30 − λ] = 0 ⟹ λ = 58 and λ = 2

((XT X) − λI)ϕ = 0



EXAMPLE  - PCA
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X =

1 2
2 1
3 4
4 3

From spectral theorem:

(XT X)ϕ = λϕ

[30 28
28 30] [ϕ11

ϕ12] = 58 [ϕ11

ϕ12] ⟹ ϕ1 =

1

2
1

2



EXAMPLE  - PCA
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X =

1 2
2 1
3 4
4 3

From spectral theorem: (XT X)ϕ = λϕ

[30 28
28 30] [ϕ11

ϕ12] = 58 [ϕ11

ϕ12] ⟹ ϕ1 =

1

2
1

2

[30 28
28 30] [ϕ21

ϕ22] = 2 [ϕ21

ϕ22] ⟹ ϕ2 =

−1

2
1

2



EXAMPLE  - PCA
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X =

1 2
2 1
3 4
4 3

From spectral theorem: (XT X)ϕ = λϕ

ϕ1 =

1

2
1

2

ϕ2 =

−1

2
1

2

λ1 = 58 λ2 = 2

ϕ =

1

2

−1

2
1

2

1

2



EXAMPLE  - PCA
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X =

1 2
2 1
3 4
4 3

ϕ1 =

1

2
1

2

ϕ2 =

−1

2
1

2

λ1 = 58 λ2 = 2

Z = Xϕ =

1 2
2 1
3 4
4 3

1

2

−1

2
1

2

1

2

=

3

2

1

2
3

2

−1

2
7

2

1

2
7

2

−1

2



EXAMPLE  - PCA
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X =

1 2
2 1
3 4
4 3

Z =

3

2

1

2
3

2

−1

2
7

2

1

2
7

2

−1

2

(2,1)

(1,2) (4,3)

(3,4)

(1.5,1.5)

(3.5,3.5)

( 3

2
,

1

2 )

( 3

2
,

−1

2 )

( 7

2
,

1

2 )

( 7

2
,

−1

2 )



PCA STEPS  -  
STEP 1 MEAN SUBTRACTION
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PCA STEPS  -  
STEP 2 COVARIANCE MATRIX
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top 5 rows of mean centered data

covariance matrix



PCA STEPS  -  
STEP 3 EIGEN VALUES & EIGEN 
VECTORS OF COVARIANCE MATRIX
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PCA STEPS  -  
STEP 4 - PRINCIPAL COMPONENTS

Multiply each eigen vector by its corresponding eigen value 
(usually square root) 

Plot them on top of the data 
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PCA STEPS  -  
STEP 5 - PROJECT DATA ALONG 
DOMINANT PC
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newData = PC1 × oldData



HOW MANY PRINCIPAL COMPONENTS ?

• How many PCs should we consider in post-hoc analysis? 

• One result of PCA is a measure of the variance to each PC relative  
 
to the total variance of the dataset. 

• We can calculate the percentage of variance explained for the m-th 
PC: 
 
 

!30

PVEm =

n
∑
i=1

z2
im

p
∑
j=1

n
∑
i=1

x2
ij



HOW MANY PRINCIPAL COMPONENTS ?

• We can calculate the percentage of variance explained for the m-th 
PC: 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PVEm =

n
∑
i=1

z2
im

p
∑
j=1

n
∑
i=1

x2
ij


