SINGULAR VALUE DECOMPOSITION (SVD)/
PRINCIPAL COMPONENTS ANALYSIS (PCA)




SVD - EXAMPLE

0 250 500 750 1000 1250 1500 1750

U,S, VI = numpy . linalg . svd(img)




SVD - EXAMPLE

full rank
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PCA - INTRODUCTION

sepal_length sepal_width petal_length petal_width species

8 4.4 2.9 1.4 0.2 setosa
52 6.9 3.1 4.9 1.5 versicolor
35 5.0 3.2 1.2 0.2 setosa

127 6.1 3.0 4.9 1.8  virginica

96 S 2.9 4.2 1.3 versicolor




PCA - INTRODUCTION
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PCA - INTRODUCTION

PCA of IRIS dataset
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PRINCIPAL COMPONENT ANALYSIS

e A technique to find the directions along which the points
(set of tuples) in high-dimensional data line up best.

* Treat a set of tuples as a matrix M and find the eigenvectors
for MMT or MTM.

 The matrix of these eigenvectors can be thought of as a
rigid rotation in a high-dimensional space.

 When this transformation is applied to the original data - the
axis corresponding to the principal eigenvector is the one
along which the points are most “spread out”.




PRINCIPAL COMPONENT ANALYSIS

 When this transformation is applied to the original data - the
axis corresponding to the principal eigenvector is the one
along which the points are most “spread out”.

e This axis is the one along which variance of the data is
maximized.

* Points can best be viewed as lying along this axis with small
deviations from this axis.

» Likewise, the axis corresponding the second eigenvector is
the axis along which the variance of distances from the first
axis is greatest, and so on.




PRINCIPAL COMPONENT ANALYSIS

* Principal Component Analysis (PCA) is a dimensionality reduction
method.

* The goal is to embed data in high dimensional space, onto a small
number of dimensions.

* It most frequent use is in exploratory data analysis and
visualization.

* It can also be helpful in regression (linear or logistic) where we can
transform input variables into a smaller number of predictors for
modeling.




PRINCIPAL COMPONENT ANALYSIS

* Mathematically,
Given: Data set {x;,x,,...,x,}

where, x. is the vector of p variable values for the i-th observation.

Return:

Matrix (¢, ¢, ..., 9]

of linear transformations that retain maximal variance.

* You can think of the first vector ¢, as a linear transformation that
embeds observations into 1 dimension

Zi =X i+ duXo+ ... +¢,1X,




PRINCIPAL COMPONENT ANALYSIS

e You can think of the first vector ¢, as a linear transformation that
embeds observations into 1 dimension

Zi=pXi+ 9 Xo+ ... + ¢, X,
where ¢, is selected so that the resulting dataset {z;.....z,}

has maximum variance.

* In order for this to make sense, mathematically, data has to be
centered

 Each X; has zero mean

 Transformation vector ¢, has to be normalized, i.e., Z =1
j=1




PRINCIPAL COMPONENT ANALYSIS

* In order for this to make sense, mathematically, data has to be
centered

* Each X; has zero mean
 Transformation vector ¢; has to be normalized, i.e., Z 2 _ 1

j=1

 We can find ¢; by solving an optimization problem:

max —Z(Zgb]le) s.t. Z 2=1
=1 =1

¢11 ¢21

Maximize variance but subject to normalization constraint.




PRINCIPAL COMPONENT ANALYSIS

 We can find ¢, by solving an optimization problem:

max —l2<2¢ﬂxy> s.t. Z 2 =1

¢11 ¢21

Maximize variance but subject to normalization constraint.

* The second transformation, ¢, is obtained similarly with the added

constraint that ¢, is orthogonal to ¢,

» Taken together [¢,, ®,] define a pair of linear transformations of the

data into 2 dimensional space

ZnXZ — XnXp[¢1’ ¢2]p><2




PRINCIPAL COMPONENT ANALYSIS

» Taken together [¢,, #,] define a pair of linear transformations of the

data into 2 dimensional space
an2 - XnXp[d)l’ ¢2]p><2

* Each of the columns of the Z matrix are called Principal
components.

e The units of the PCs are meaningless.
* In practice we may also scale X to have unit variance.

* In general if variables X; are measured in different units(e.g., miles

vs. liters vs. dollars), variables should be scaled to have unit

variance.




SPECTRAL THEOREM

Using Spectral theorem

X' X)p = A¢p
XX'(X¢p) = MXep)

Conclusion:
The matrices XX’ and X’X share the same nonzero eigenvalues
To get an eigenvector of XX from x7x multiply ¢ on the left by X

Very powerful, particularly if number of observations, m, and the
number of predictors, n, are drastically different in size.

For PCA:
Cov(X,X) = XX7




EXAMPLE - PCA
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Eigen Values and Eigen Vectors?




EXAMPLE - PCA
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EXAMPLE - PCA

I-lkb.)[\.)r—kl
W A= N

From spectral theorem:
X'X)p=1p = X'X)p—Ap=0
(X'X)=ADp =0
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EXAMPLE - PCA
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EXAMPLE - PCA
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EXAMPLE -PCA
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EXAMPLE - PCA
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EXAMPLE - PCA
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PCA STEPS -
STEP 1 MEAN SUBTRACTION

00000




PCA STEPS -
STEP 2 COVARIANCE MATRIX

array([[-84.07963403, -29.20401342],
[-94.40799878, -24.21822549],
[-20.0794366 , -18.24247399],
[ 62.63769935, 46.8234735 ]])

top 5 rows of mean centered data

array([[3881.30854873, 1897.16347756],
[1897.16347756, 1557.15527689]])

covariance matrix




PCA STEPS -
STEP 3 EIGEN VALUES & EIGEN
VECTORS OF COVARIANCE MATRIX

eig vals, eig _vecs = np.linalg.eig(cov)

eig vals

array([4944.01310842, 494.4507172 ])

eig vecs

array([[ 0.87244857, -0.48870594],
[ 0.48870594, 0.87244857]1])




PCA STEPS -
STEP 4 - PRINCIPAL COMPONENTS

Multiply each eigen vector by its corresponding eigen value
(usually square root)

Plot them on top of the data




PCA STEPS -
STEP 5 - PROJECT DATA ALONG
DOMINANT PC
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newData = PC1 X oldData




HOW MANY PRINCIPAL COMPONENTS ?

* How many PCs should we consider in post-hoc analysis?

* One result of PCA is a measure of the variance to each PC relative

to the total variance of the dataset.

. \FI’VCe can calculate the percentage of variance explained for the m-th




HOW MANY PRINCIPAL COMPONENTS ?

. \I;Vg can calculate the percentage of variance explained for the m-th
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