CLUSTERING / GAUSSIAN MIXTURE MODEL

CLUSTERING

Group a collection of points into clusters

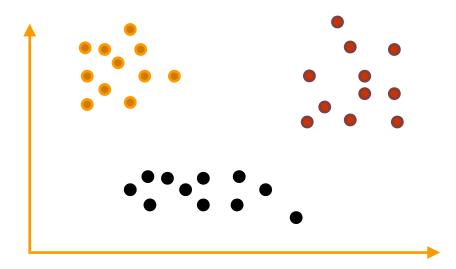
• In "supervised methods", the outcome (or response) is based on various predictors.

• In clustering, we want to extract patterns on variables without analyzing a specific response variable.

• This is a form of "unsupervised learning"

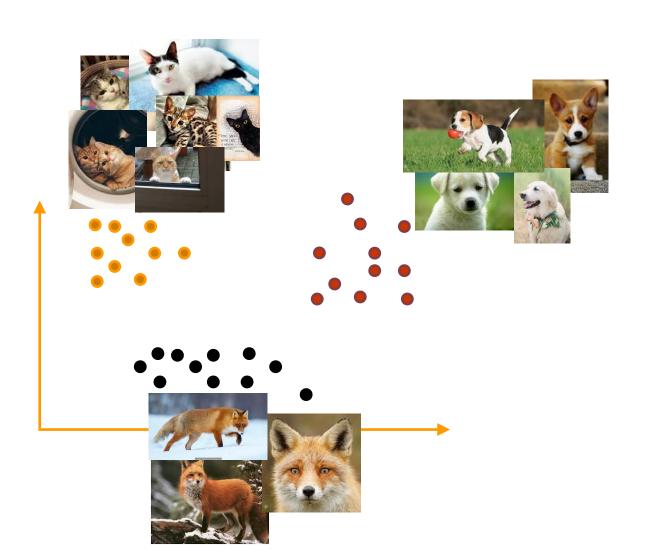
CLUSTERING

• The points in each cluster are closer to one another and far from the points in other clusters.



DATA POINTS

• Each of the data points belong to some n-dimensional space.



DISSIMILARITY MEASUREMENTS

Given measurements x_{ij} for i = 1,...,N observations over j = 1,...,p predictors.

Define dissimilarity, $d_j(x_{ij}, x_{i'j})$

We can define dissimilarity between objects as

$$d(x_i, x_{i'}) = \sum_{j=1}^{p} d_j(x_{ij}, x_{i'j})$$

The most common distance measure is squared distance

$$d_j(x_{ij}, x_{i'j}) = (x_{ij} - x_{i'j})^2$$

DISSIMILARITY MEASUREMENTS

Absolute difference

$$d_j(x_{ij}, x_{i'j}) = |x_{ij} - x_{i'j}|$$

For categorical variables, we could set

$$d_j(x_{ij}, x_{i'j}) = 0$$
 if $x_{ij} = x_{i'j}$
1 otherwise

K-MEANS CLUSTERING

- A commonly used algorithm to perform clustering
- Assumptions:
 - Euclidean distance,

$$d(x_i, x_{i'}) = \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2 = ||x_i - x_{i'}||^2$$

• K-means partitions observations into K clusters, with K provided as a parameter.

K-MEANS CLUSTERING

- Given some clustering or partition, C, the cluster assignment of observation, x_i to cluster $k \in \{1,...,K\}$ is denoted as C(i) = k.
- K-means seeks to minimize a clustering criterion measuring dissimilarity of observations assigned to each cluster

K-MEANS OBJECTIVE FUNCTION

• We want to minimize within-cluster dissimilarity.

$$W = \sum_{k=1}^{K} \sum_{i=1}^{N} ||x_{ik} - \bar{x}_k||^2$$

where \bar{x}_k is the centroid of the cluster k

 The criteria to minimize is the total distance given by each observation to the mean(centroid) of the cluster to which the observation is assigned.

K-MEANS - ITERATIVE ALGORITHM

1. Initialize by choosing K observations as centroids.

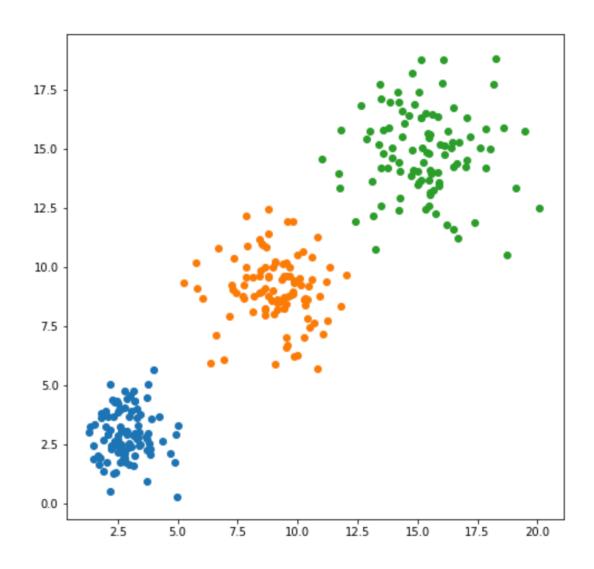
$$m_1, m_2, ..., m_k$$

2. Assign each observation i to the cluster with the nearest centroid, i.e,

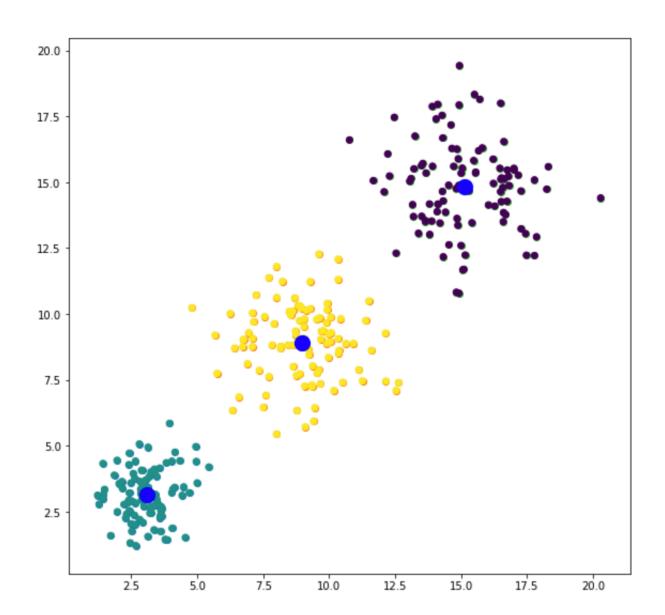
$$\min_{1 \le k \le K} ||x_i - m_k||^2$$

- **3.** Update centroids $m_k = \bar{x}_k$
- 4. Iterate steps 2 and 3 until convergence.

K-MEANS - ITERATIVE ALGORITHM - DATA

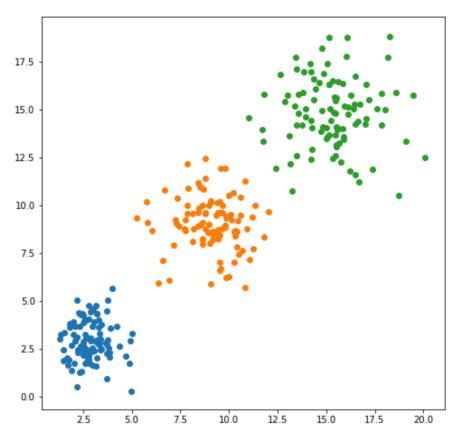


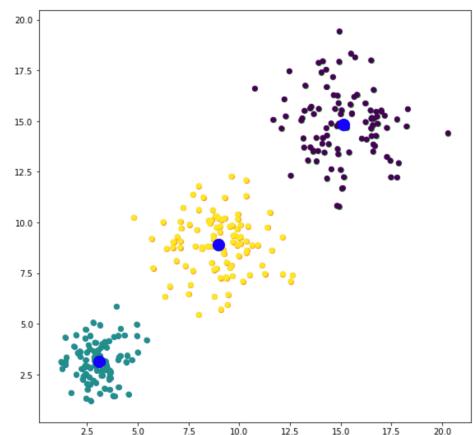
K-MEANS - ITERATIVE ALGORITHM - CLUSTERS



K-MEANS - ITERATIVE ALGORITHM

- **CLUSTERS**





Example

Application of k-means algorithm for color-based image segmentation [Bishop book[1] and its web site]
K-means clustering applied to the color vectors of pixels in RGB color-space

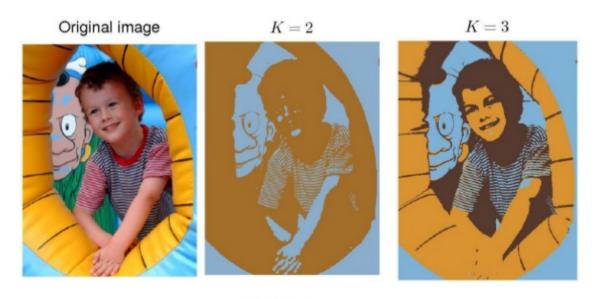
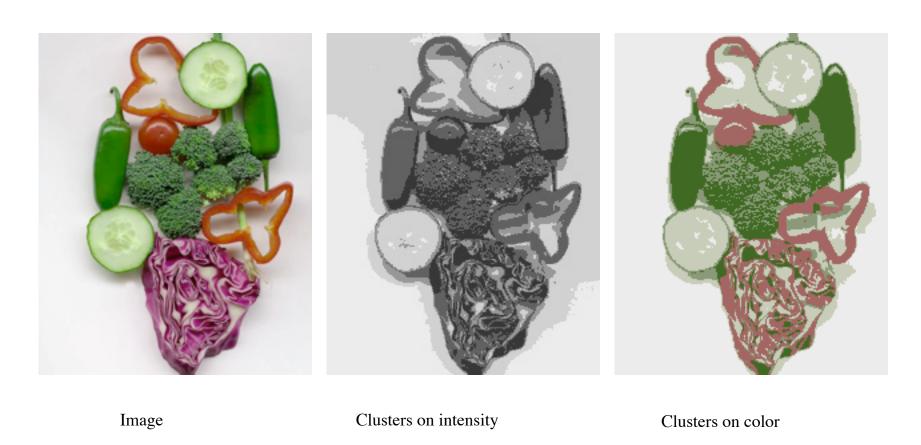


Fig. 3 [1]

Image Segmentation by K-Means

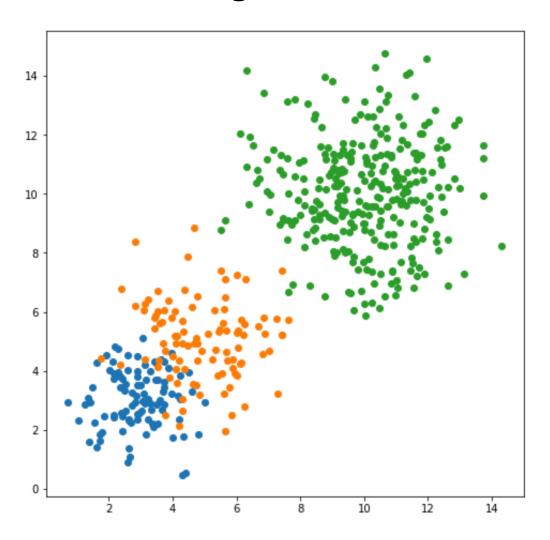
- Select a value of K
- Select a feature vector for every pixel (color, texture, position, or combination of these etc.)
- Define a similarity measure between feature vectors (Usually Euclidean Distance).
- Apply K-Means Algorithm.
- Apply Connected Components Algorithm.
- Merge any components of size less than some threshold to an adjacent component that is most similar to it.

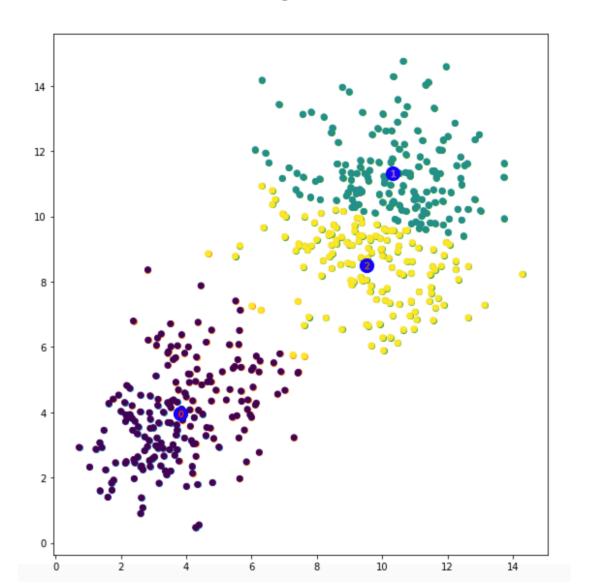
Results of K-Means Clustering:

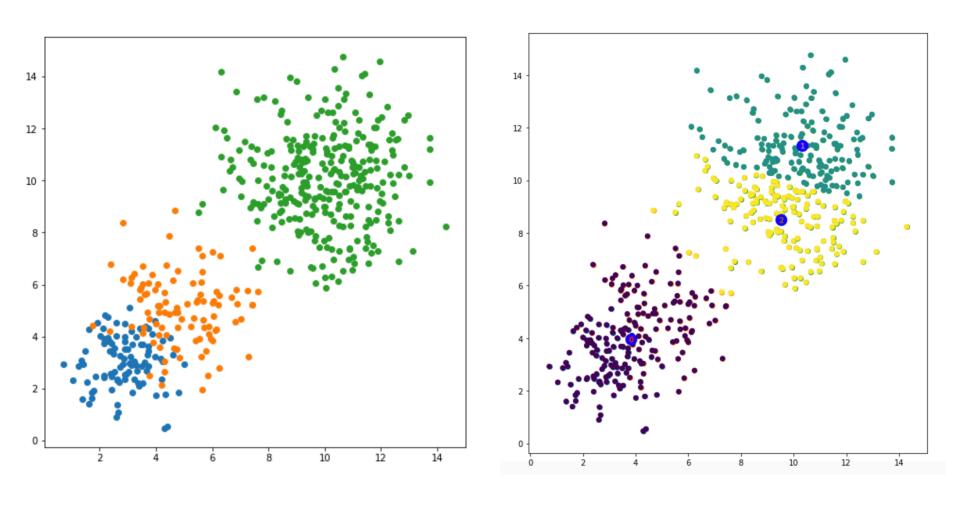


K-means clustering using intensity alone and color alone

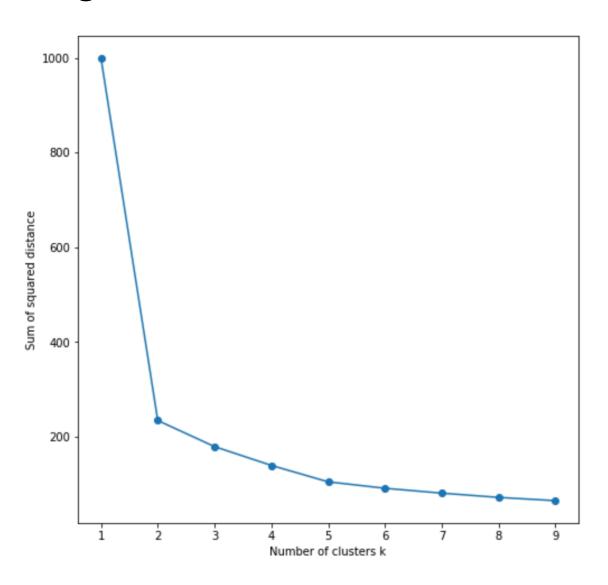
- Will converge
- But not to the global minimum of objective function
- Variations: search for appropriate number of clusters by applying k-means with different k and comparing the results







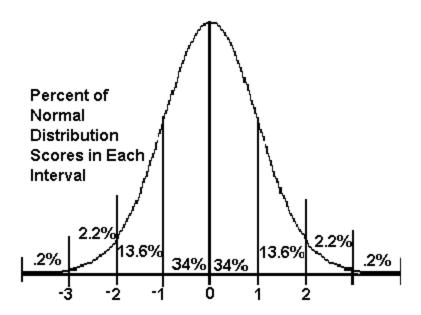
Choosing k



GAUSSIAN MIXTURE MODEL

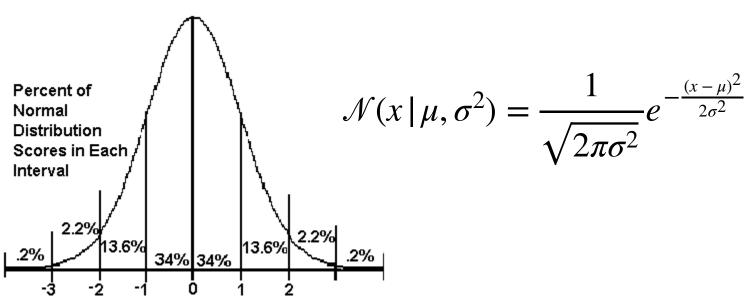
Notation: Normal distribution 1D case

 $N(\mu, \sigma)$ is a 1D normal (Gaussian) distribution with mean μ and standard deviation σ (so the variance is σ^2 .



Notation: Normal distribution 1D case

 $N(\mu, \sigma)$ is a 1D normal (Gaussian) distribution with mean μ and standard deviation σ (so the variance is σ^2 .



Multivariate Normal distribution

$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{\mid \Sigma \mid^{\frac{1}{2}}} exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

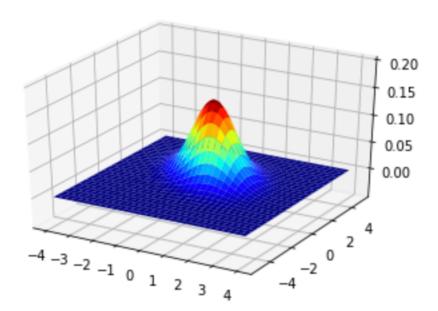
x is a D dimensional vector

 μ is a D-dimensinal mean vector

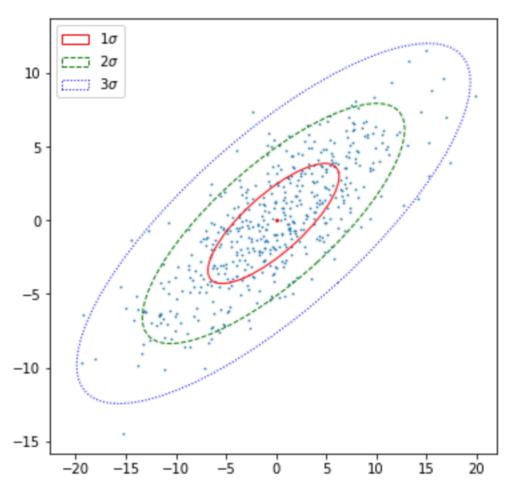
 Σ is a D x D covariance matrix

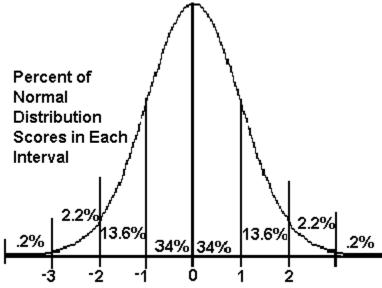
Surface Plot

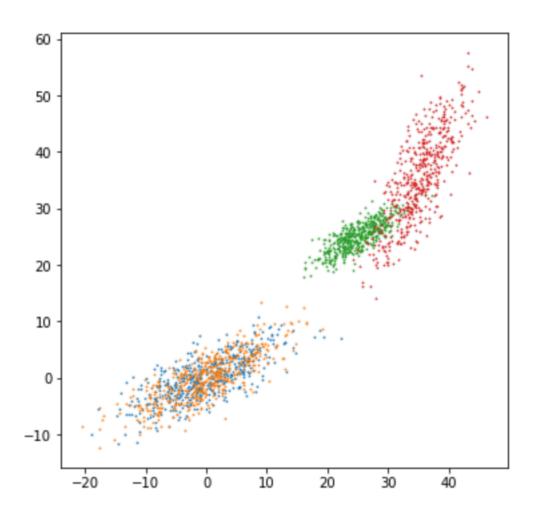
$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{\mid \Sigma \mid^{\frac{1}{2}}} exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

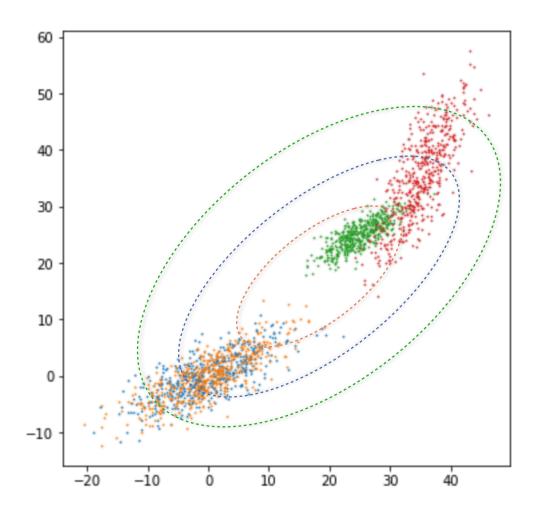


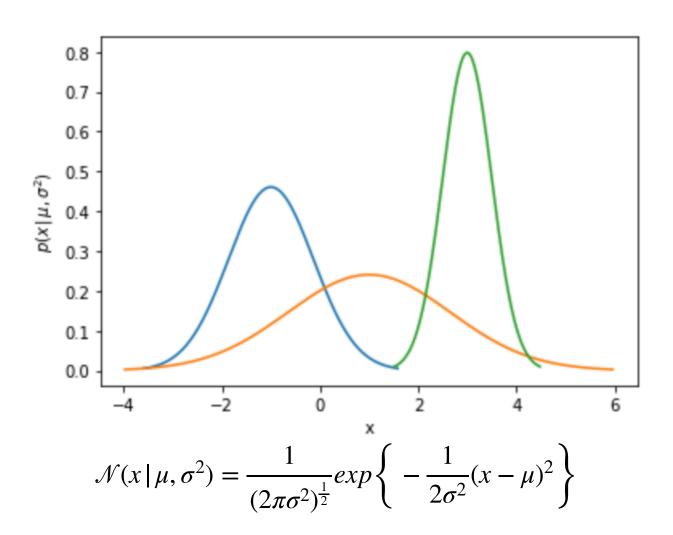
Uni-modal dataset

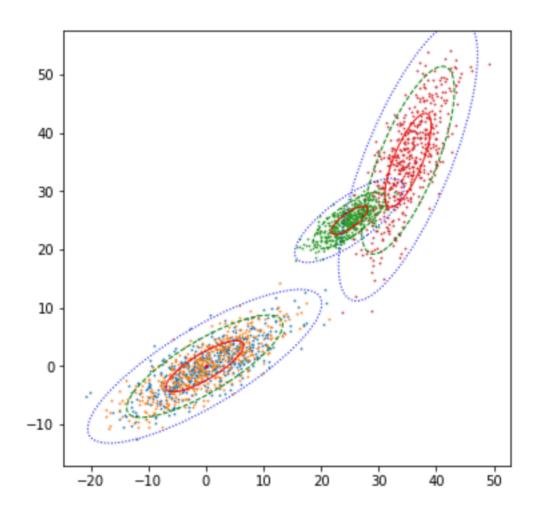






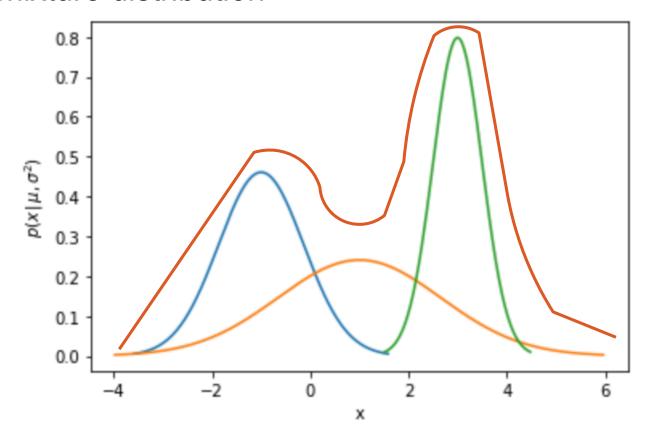


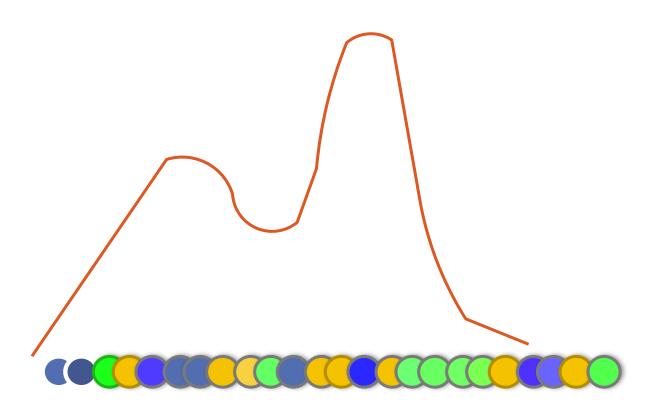


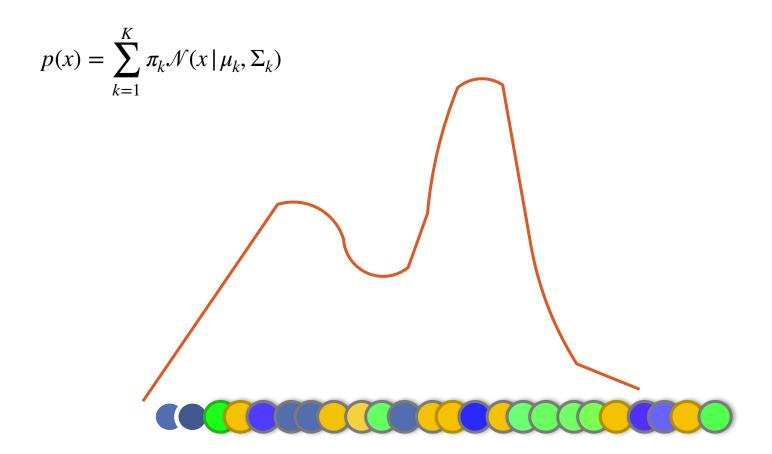


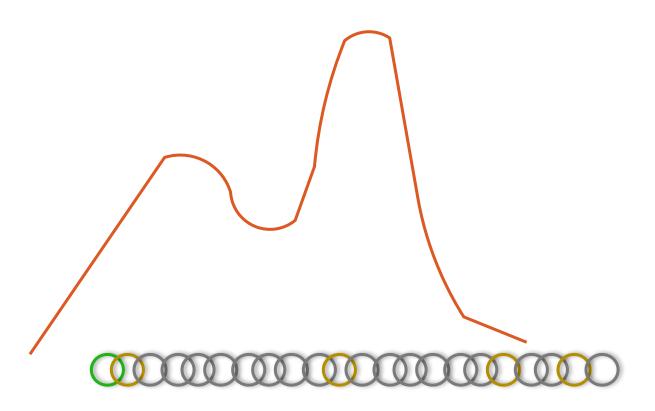
A linear combination of Gaussian distributions forms a superposition

Formulated as a probabilistic model known as mixture distribution









 We have a linear combination of several Gaussians

Each Gaussian is a cluster, one of K clusters

Each cluster has a mean and covariance

Mixing probability,

Parameters - μ , Σ , π

$$\sum_{k=1}^{K} \pi_k = 1 ; 0 \le \pi_k \le 1$$

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mid \mu_k, \Sigma_k)$$

$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{\mid \Sigma \mid^{\frac{1}{2}}} exp\left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

x is a D dimensional vector

 μ is a D-dimensinal mean vector

 Σ is a D x D covariance matrix

Maximum Likelihood Estimate

$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{\mid \Sigma \mid^{\frac{1}{2}}} exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

$$ln\mathcal{N}(x | \mu, \Sigma) = -\frac{D}{2} ln \, 2\pi - \frac{1}{2} ln \, \Sigma - \frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)$$

Once Optimal values of the parameters are found,

the solution will correspond to the Maximum Likelihood Estimate (MLE)