EXPECTATION MAXIMIZATION




Notation: Normal distribution 1D case

N(u , o) is a 1D normal (Gaussian) distribution with
mean u and standard deviation o (so the
variance is o2.
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Notation: Normal distribution 1D case

N(u, o) is a 1D normal (Gaussian) distribution with
mean u and standard deviation o (so the
variance Is o2.
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Multivariate Normal distribution

1 1 1 _—
N(x|pu,2) = — —expy ——(x—p) X (x — )
Q2n)z |2 2

x is a D dimensional vector

u is a D-dimensinal mean vector

> is a D x D covariance matrix



Uni-modal dataset
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Multi-modal dataset




Multi-modal dataset
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Multi-modal dataset

p(x|u, o)
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Multi-modal dataset




Gaussian Mixtures Model

A linear combination of Gaussian distributions forms a
superposition

Formulated as a probabilistic model known as
mixture distribution
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Gaussian Mixtures Model



Gaussian Mixtures Model

K
p(x) = Y m (x| g Zy)
k=1



Gaussian Mixtures Model



Gaussian Mixtures Model

 WWe have a linear combination of several
Gaussians

« Each Gaussian is a cluster, one of K clusters

 Each cluster has a mean and covariance

* Mixing probability,



Gaussian Mixtures Model

Parameters - 4, 2, «

K
k=1

K
p(x) =) mN (x| g Zy)
k=1
1

Q)T |Z|?

1 Ts—1
N(x|p,2) = eXP{ —E(x—ﬂ) by (X—M)}

x is a D dimensional vector

u is a D-dimensinal mean vector

> is a D x D covariance matrix



Maximum Likelihood Estimate

11 1 e
N(x|pu,X) = - —expy ——(Xx—p) X7 (x —p)
Q) |22 2

D 1 1 Fe_l
ln/l/(xl,u,Z)z—Eanﬂ—Ean—E(x—,u) X (x— )

Once Optimal values of the parameters are found,

the solution will correspond to the Maximum Likelihood Estimate (MLE)



Maximum Likelihood Estimate

For a point, x;, let the cluster to which that point belongs be labeled z,

values of z;, satisfy

7 € {0,1} szzl
k

z is a K-dimensional binary random variable having 1-of-K representation,

A particular element z, is equal to 1 and all other elements are equal to 0

K
r@ =] 1=
k=1



Maximum Likelihood Estimate

The conditional distribution of x, given a particular value for z,

is a Gaussian

pxlz =1) = N(x| e, Zy)

K
p(xl2) = [ [ 4Gl o Zp)
k=1

Our goal: what is the probability of z given our observation x?

p(z|x)?



Maximum Likelihood Estimate

Our goal: what is the probability of z given our observation x?

The joint distribution, P(x, z), is given by p(2)p(x|z)

The marginal distribution of x, is obtained by summing the joint distribution
over all possible states of z, to give

K
p() = Y p@p(x|2) = Y| mN (xl . Zp)
Z k=1

It means that, for every observed data point x,
there is a corresponding latent variable z;



Maximum Likelihood Estimate

K
p() =) p@Ppx|z) = ) mN (x| Zp)

k=1

Conditional probability of, z, given x,, is represented by Bayes' theorem

plz=1]x) = II()(Zk: Dpx|z,=1)

__Z'ip(zi = Dp(x|z;=1)

o N (x| s 2)

K
Z ﬂi'/V(-x | His 21)
i=1

m, is the prior probability of z, = 1



Maximum Likelihood Estimate
K
p() =) p@Ppx|z) = ) mN (x| Zp)
2z k=1
Conditional probability of, z, given x,, is represented by Bayes' theorem
p(g = Dpx|z = 1)
K
> pz;=Dpxlz;=1)

i=1
o N (x| g 24)

K
Z ﬂi'/V(-x | His 21)
i=1

p(z = 1]x)

m, is the prior probability of z, = 1

p(z, = 1| x) is the posterior probability



Maximum Likelihood Estimate

K
p() = Y p@p(x|2) = Y mN (x] py 5)

k=1

Data set of observations {x, ..., xy}

X is an N x D matrix

Z is an N x K matrix of latent variables

Assumption: Data points are drawn independently from the distribution

n n K
pX|mp, %) = Hp(xi) = H Z N (X | s 24

The log likelinood is given by:

n K
InpX|mpu,Z)= Y In Y mN (x| Zy)
i=1 k=1



Maximum Likelihood Estimate

The log likelihood is given by:

n K
InpX|mu,2) = Z In Z N O | s )
i=1 k=1

'/V(xi | /’tk’ Zk) —

1 1 __
— —expy — =G — ) X (G — )
Lmz |22 2



Expectation Maximization

For lack of a closed form solution

n K
InpX|rm,pu, %) = Z In Z N (X | s 20)
i=1 k=1
We will use an iterative technique
Stepl — Choose some initial values for the means, covariances
and mixing coefficients, evaluate log likelihood
Step?
E-step: Use current values for the parameters to evaluate

the posterior probabilities

=1 ) —1
y(zy) = p(z = 1]x;) = II;(Zk x|z =1)

_ZIP(ZJ- = Dp(xilz;=1)
=

NV (X | s Z)

K

J=1




Expectation Maximization

Step3
M-step: re-estimate means, covariances and mixing coefficients

| &
" = Vk Z 7 (Zp)X;
i=1

1 N
= D )6 — e — )’
i=1

new Nk al
=N where N, = Z ¥ (Zi)
i=1
Step4

—Evaluate the log likelihood

n K
InpX|mpu,Z) = Y In Y mN (x| Zy)
i=1 k=1



Expectation Maximization

Stepl — Choose some initial values for the means, covariances
and mixing coefficients, evaluate log likelihood

mean - pick a random value between minimum and maximum data value , twice
mean1 and mean?2

std - pick a random value, may be just 1
mixing-coeff - pick equal values - 0.5 for two clusters

Step?
E-step: Use current values for the parameters to evaluate

the posterior probabilities
Pz = Dpxlz. =1

v(Zp) =p(g =1|x) = X
_1P(Zj = Dp(x;[z;=1)

J
o N (X | s Z)

K
j=1



Expectation Maximization

Step?
E-step: Use current values for the parameters to evaluate

the posterior probabilities
Pz = Dpx;lz = 1)
y(z) =Pl = 1]x) = —— .
ZP(ZJ' = I)P(xi|Zj =1)

j=1

N (X | s Zg)

K
'21 7Tj=/V(xi | Hjs )
J=

For each data point - find pdf value for each distribution

1 1 1
Tsy—1
N | s Zy) = D T exp{ — E(Xi — ) Zk (x; — ﬂk)}
Qm)z | Z 7
For two clusters - we will get two values for each data point 7172
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Expectation Maximization
Step3 -72)

M-step: re-estimate means, covariances and mixing coefficients

| &
" = Vk Z 7 (Zp)X;
i=1

N, — sum of weights (probabilities) — y/s, y;s

N
where N, = Z ¥ (Zi)
1 N i=1
e = L3 e =
ko

Thew — % N - length of data
L=

Step4
—Evaluate the log likelihood

n K
InpX|7,pu,Z) = Z In Z m N (X | > Z4)
i=1 k=1
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Expectation Maximization

Input Gaussian 1: M
Input Gaussian 2: M

Gaussian 1: M
Gaussian 2: M

1.5e+01, o = 7.1

5.5, 0= 2.9

5.9, 0 = 3.0, weight = 0.8
2e+01, 0 = 4.4, weight = 0.
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