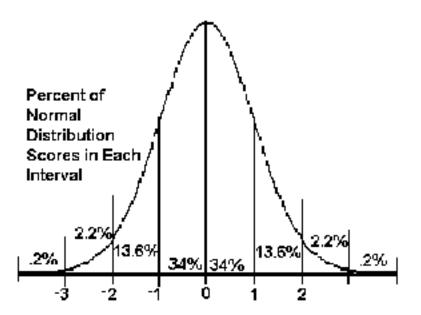
EXPECTATION MAXIMIZATION

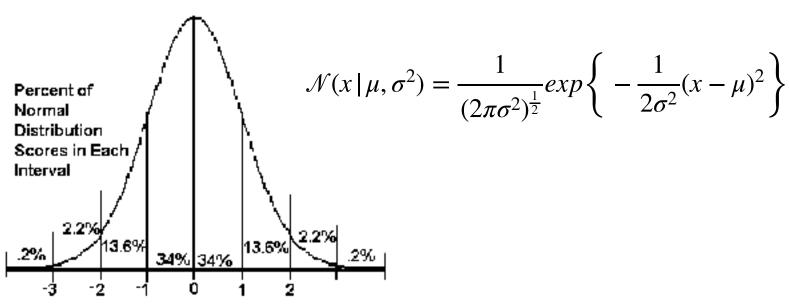
Notation: Normal distribution 1D case

 $N(\mu, \sigma)$ is a 1D normal (Gaussian) distribution with mean μ and standard deviation σ (so the variance is σ^2 .



Notation: Normal distribution 1D case

 $N(\mu, \sigma)$ is a 1D normal (Gaussian) distribution with mean μ and standard deviation σ (so the variance is σ^2 .



Multivariate Normal distribution

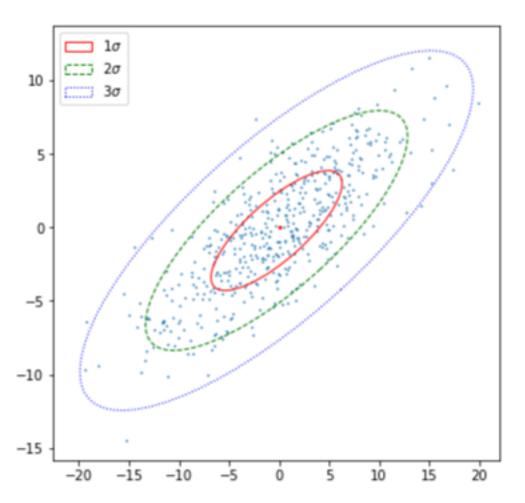
$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{\mid \Sigma \mid^{\frac{1}{2}}} exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

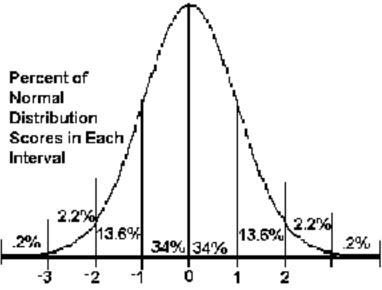
x is a D dimensional vector

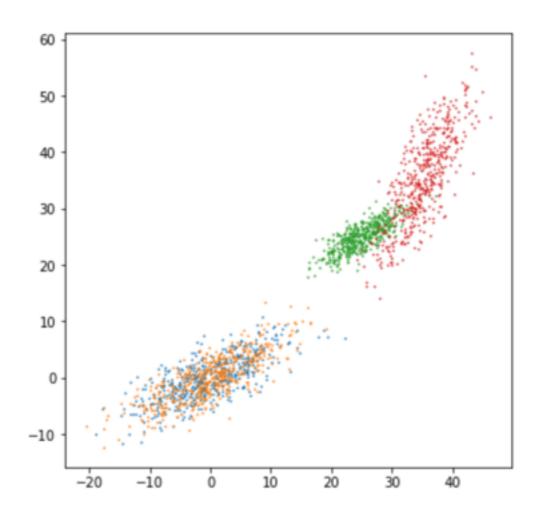
 μ is a D-dimensinal mean vector

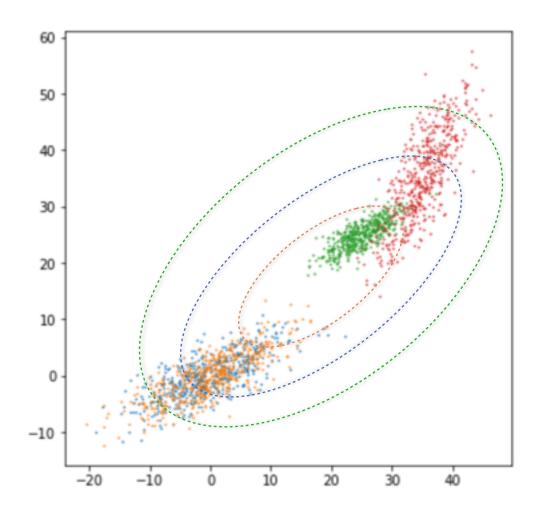
 Σ is a D x D covariance matrix

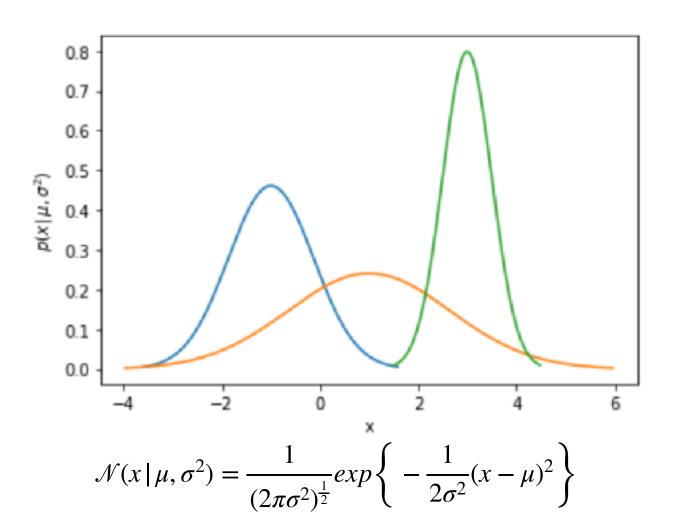
Uni-modal dataset

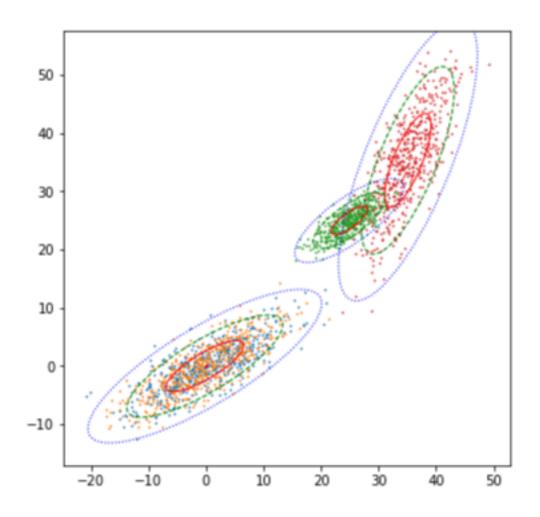






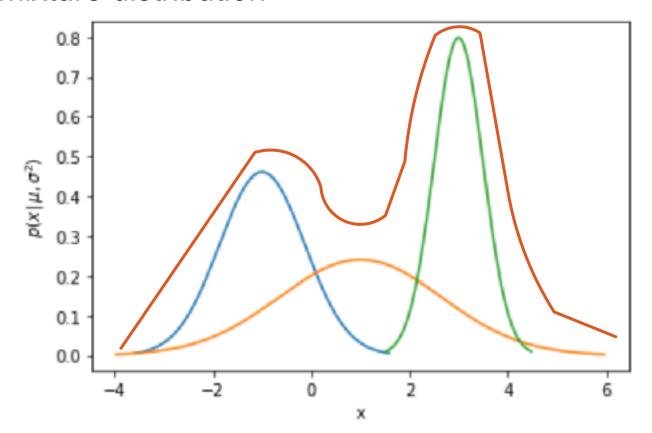


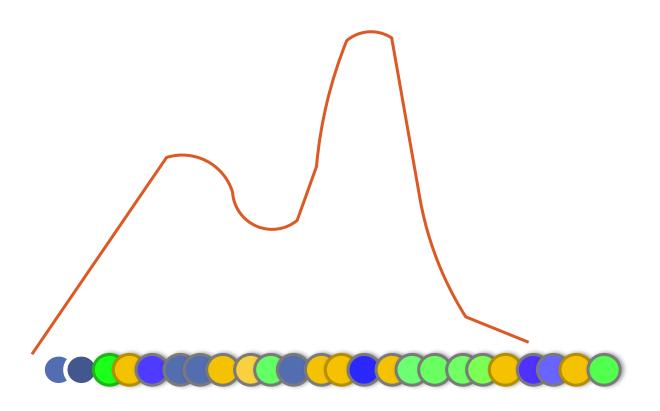


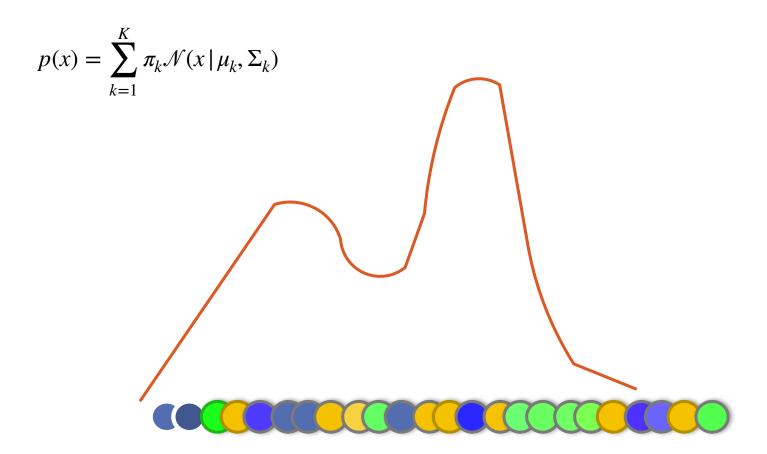


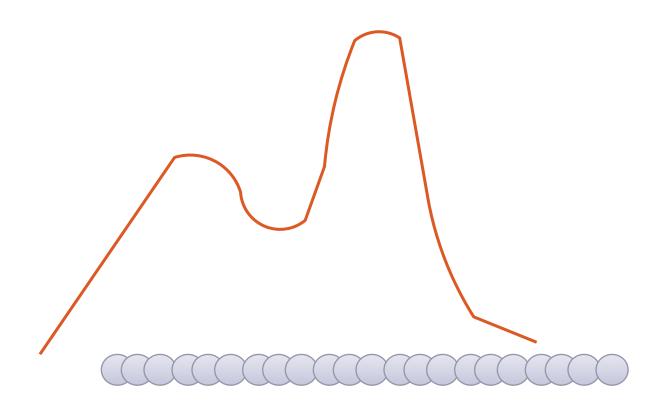
A linear combination of Gaussian distributions forms a superposition

Formulated as a probabilistic model known as mixture distribution









 We have a linear combination of several Gaussians

Each Gaussian is a cluster, one of K clusters

Each cluster has a mean and covariance

Mixing probability,

Parameters - μ , Σ , π

$$\sum_{k=1}^{K} \pi_k = 1 \qquad \qquad ; \qquad 0 \le \pi_k \le 1$$

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mid \mu_k, \Sigma_k)$$

$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{\mid \Sigma \mid^{\frac{1}{2}}} exp\left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

x is a D dimensional vector

 μ is a D-dimensinal mean vector

 Σ is a D x D covariance matrix

$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{\mid \Sigma \mid^{\frac{1}{2}}} exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

$$ln\mathcal{N}(x | \mu, \Sigma) = -\frac{D}{2} ln \, 2\pi - \frac{1}{2} ln \, \Sigma - \frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)$$

Once Optimal values of the parameters are found,

the solution will correspond to the Maximum Likelihood Estimate (MLE)

For a point, x_i , let the cluster to which that point belongs be labeled z_k

values of z_k , satisfy

$$z_k \in \{0,1\} \qquad \sum_k z_k = 1$$

z is a K-dimensional binary random variable having 1-of-K representation,

A particular element z_k is equal to 1 and all other elements are equal to 0

$$p(z) = \prod_{k=1}^K \pi_k^{z_k}$$

The conditional distribution of x, given a particular value for z, is a Gaussian

$$p(x | z_k = 1) = \mathcal{N}(x | \mu_k, \Sigma_k)$$

$$p(x \mid z) = \prod_{k=1}^{K} \mathcal{N}(x \mid \mu_k, \Sigma_k)^{z_k}$$

Our goal: what is the probability of z given our observation x?

$$p(z|x)$$
?

Our goal: what is the probability of z given our observation x?

The joint distribution, P(x, z), is given by p(z)p(x|z)

The marginal distribution of x, is obtained by summing the joint distribution over all possible states of z, to give

$$p(x) = \sum_{z} p(z)p(x \mid z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mid \mu_k, \Sigma_k)$$

It means that, for every observed data point x_i , there is a corresponding latent variable z_i

$$p(x) = \sum_{z} p(z)p(x \mid z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mid \mu_k, \Sigma_k)$$

Conditional probability of, z_k given x_k , is represented by Bayes' theorem

$$p(z_k = 1 | x) = \frac{p(z_k = 1)p(x | z_k = 1)}{\sum_{i=1}^{K} p(z_i = 1)p(x | z_i = 1)}$$
$$= \frac{\pi_k \mathcal{N}(x | \mu_k, \Sigma_k)}{\sum_{i=1}^{K} \pi_i \mathcal{N}(x | \mu_i, \Sigma_i)}$$

 π_k is the prior probability of $z_k = 1$

$$p(x) = \sum_{z} p(z)p(x \mid z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mid \mu_k, \Sigma_k)$$

Conditional probability of, z_k given x_k , is represented by Bayes' theorem

$$p(z_k = 1 | x) = \frac{p(z_k = 1)p(x | z_k = 1)}{\sum_{i=1}^{K} p(z_i = 1)p(x | z_i = 1)}$$
$$= \frac{\pi_k \mathcal{N}(x | \mu_k, \Sigma_k)}{\sum_{i=1}^{K} \pi_i \mathcal{N}(x | \mu_i, \Sigma_i)}$$

 π_k is the prior probability of $z_k = 1$

 $p(z_k = 1 | x)$ is the posterior probability

$$p(x) = \sum_{z} p(z)p(x \mid z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mid \mu_k, \Sigma_k)$$

Data set of observations $\{x_1, ..., x_N\}$

X is an $N \times D$ matrix

Z is an $N \times K$ matrix of latent variables

Assumption: Data points are drawn independently from the distribution

$$p(X | \pi, \mu, \Sigma) = \prod_{i=1}^{n} p(x_i) = \prod_{i=1}^{n} \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)$$

The log likelihood is given by:

$$ln p(X \mid \pi, \mu, \Sigma) = \sum_{i=1}^{n} ln \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)$$

The log likelihood is given by:

$$ln p(X \mid \pi, \mu, \Sigma) = \sum_{i=1}^{n} ln \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)$$

$$\mathcal{N}(x_i | \mu_k, \Sigma_k) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{|\Sigma_k|^{\frac{1}{2}}} exp\left\{ -\frac{1}{2} (x_i - \mu_k)^T \Sigma_k^{-1} (x_i - \mu_k) \right\}$$

For lack of a closed form solution

$$\ln p(X \mid \pi, \mu, \Sigma) = \sum_{i=1}^{n} \ln \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)$$

We will use an iterative technique

Step1 – Choose some initial values for the means, covariances and mixing coefficients, evaluate log likelihoodStep2

E-step: Use current values for the parameters to evaluate the posterior probabilities

$$\gamma(z_{ik}) = p(z_k = 1 \mid x_i) = \frac{p(z_k = 1)p(x_i \mid z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x_i \mid z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}$$

Step3

M-step: re-estimate means, covariances and mixing coefficients

$$\mu_k^{new} = \frac{1}{N_k} \sum_{i=1}^N \gamma(z_{ik}) x_i$$

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{i=1}^N \gamma(z_{ik}) (x_i - \mu_k^{new}) (x_i - \mu_k^{new})^T$$

$$\pi_k^{new} = \frac{N_k}{N} \qquad \text{where } N_k = \sum_{i=1}^N \gamma(z_{ik})$$

Step4

Evaluate the log likelihood

$$\ln p(X \mid \pi, \mu, \Sigma) = \sum_{i=1}^{n} \ln \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)$$

Step1 – Choose some initial values for the means, covariances and mixing coefficients, evaluate log likelihood

mean - pick a random value between minimum and maximum data value , twice mean1 and mean2

std - pick a random value, may be just 1 mixing-coeff - pick equal values - 0.5 for two clusters

Step2

E-step: Use current values for the parameters to evaluate the posterior probabilities

$$\gamma(z_{ik}) = p(z_k = 1 \mid x_i) = \frac{p(z_k = 1)p(x_i \mid z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x_i \mid z_j = 1)}$$

$$= \frac{\pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}$$

Step2

E-step: Use current values for the parameters to evaluate the posterior probabilities

$$\gamma(z_{ik}) = p(z_k = 1 \mid x_i) = \frac{p(z_k = 1)p(x_i \mid z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x_i \mid z_j = 1)}$$

$$= \frac{\pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}$$

For each data point - find pdf value for each distribution

$$\mathcal{N}(x_i | \mu_k, \Sigma_k) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{|\Sigma_k|^{\frac{1}{2}}} exp \left\{ -\frac{1}{2} (x_i - \mu_k)^T \Sigma_k^{-1} (x_i - \mu_k) \right\}$$

For two clusters - we will get two values for each data point γ_1, γ_2

$$\gamma_1 = \frac{\gamma_1}{\gamma_1 + \gamma_2} \qquad \qquad \gamma_2 = \frac{\gamma_2}{\gamma_1 + \gamma_2}$$

Step3

$$(\gamma_1, \gamma_2)$$

M-step: re-estimate means, covariances and mixing coefficients

$$\mu_k^{new} = \frac{1}{N_k} \sum_{i=1}^N \gamma(z_{ik}) x_i$$

 N_k – sum of weights (probabilities) – $\gamma_1's$, $\gamma_2's$

where
$$N_k = \sum_{i=1}^{N} \gamma(z_{ik})$$

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{i=1}^{N} \gamma(z_{ik}) (x_i - \mu_k^{new}) (x_i - \mu_k^{new})^T$$

$$\pi_k^{new} = \frac{N_k}{N}$$

N - length of data

Step4

-Evaluate the log likelihood

$$ln p(X \mid \pi, \mu, \Sigma) = \sum_{i=1}^{n} ln \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)$$

```
Input Gaussian 1: \mu = 1.5e+01, \sigma = 7.1
Input Gaussian 2: \mu = 5.5, \sigma = 2.9
Gaussian 1: \mu = 5.9, \sigma = 3.0, weight = 0.8
Gaussian 2: \mu = 2e+01, \sigma = 4.4, weight = 0.2
```

