Computer Vision CMSC 426

Spring 2020

Logistics

- Four projects, and three homework assignments (programming + discussion): in groups of three
- Midterm exam: in class
- All information available from the <u>Website</u>
- Grading
 - Projects 50 %
 - Homework 25%
 - MidTerm 25%

Programming

- Python
- Primer on Python?

Administration

- Webpage
 - Get homework and projects
 - Syllabus
 - Other documents
- Piazza
 - Ask questions
 - do not post solutions
 - do not ask if your answer or approach is correct
 - Discuss issues
 - Public versus private
- ELMS
 - Hand in homework and projects
 - See grades

Recommended Texts

Computer Vision: Algorithms and Application, Richard Szeliski Online: <u>http://szeliski.org/Book/</u>

Computer Vision: A Modern Approach David Forsyth and Jean Ponce Online: <u>http://www.csd.uwo.ca/~olga/Courses/Winter2010/CS4442_9542b/</u> <u>CVbook.pdf</u>

Digital Image Processing, Prentice Hall, Rafael Gonzalez, and Richard Woods, 2008. Online: <u>http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/</u> <u>Digital_Image_Processing_2ndEd.pdf</u>

Multiple View Geometry in Computer Vision

Richard Hartley and Andrew Zisserman University Press, 2004, selected chapters available online: <u>http://www.robots.ox.ac.uk/~vgg/hzbook/</u>

What is Computer Vision

What is Computer Vision

What is Computer Vision

Goals of Computer Vision

- Build machines and develop algorithms which can automatically replicate some functionalities of biological visual system
- Systems which navigate in cluttered environments
- Systems which can recognize objects, activities
- Systems which can interact with humans/world
- Synergies with other disciplines and various applications Artificial Intelligence robotics, natural language understanding
- Vision as a sensor medical imaging, Geospatial Imaging, robotics, visual surveillance, inspection

Computer Vision

Visual Sensing

Images I(x,y) - brightness patterns

- image appearance depends on structure of the scene
- material and reflectance properties of the objects
- position and strength of light sources

Visual Information Processing

This is the part of your brain that processes visual information

Challenges/Issues

- About 40% of our brain is devoted to vision
- We see immediately and can form and understand images instantly
- Applications and examples

Connections to other disciplines

Goal of Computer Vision

what we see

what computers see

And so are these!

50

0 0

v

Why study computer vision?

Vision is useful: Images and video are everywhere!

Vision as measurement device

Special effects: shape and motion capture

3D Modeling

http://www.photogrammetry.ethz.ch/research/cause/3dreconstruction3.html

Face recognition

How the Afghan Girl was Identified by Her Iris Patterns

Source: S. Seitz

Biometrics

Optical character recognition (OCR)

Technology to convert scanned docs to text

If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs

License plate readers <u>http://en.wikipedia.org/wiki/</u> <u>Automatic number plate recognition</u>

Source: S. Seitz

Mobile visual search

Google Art Museum Project

Navigate museums of the world

(a)

(d)

Autonomous vehicles

Vision-based interaction (and games)

Assistive technologies

Classification

Vision as a source of semantic information

Object categorization

Challenges: viewpoint variation

Michelangelo 1475-1564

Challenges: illumination

image credit: J. Koenderink

Challenges: scale

Challenges: deformation

Xu, Beihong 1943

slide credit: Fei-Fei, Fergus & Torralba

Challenges: occlusion

Magritte, 1957

Challenges: background clutter

Emperor shrimp and commensal crab on a sea cucumber in Fiji Photograph by Tim Laman

© 2007 National Geographic Society. All rights reserved.

Challenges: Motion

Challenges: object intra-class variation

slide credit: Fei-Fei, Fergus & Torralba

Challenges: local ambiguity

Levels of complexity

- Early vision local operations, compute maps, or statistics of individual pixels (edges, motion fields, depth maps)
- Midlevel vision assembly of local information (segmentation, contour completions, grouping)
- Scene analysis recognition of objects, scenes
- Active vision how to control and use the resources to adjust the sensor to gather additional information
- Goal directed vision control behaviors based on visual information

Contents of the Class

Image Processing, Low-level and Mid-level Vision :

- Image sensing, lenses
- Non-traditional sensors & perceptual coordinate systems
- Photometry and Color
- Filtering, correlation, convolution, noise
- Fourier transform
- Edge detection, Boundary detection
- Hough transforms
- Features, Corners, SIFT features
- Image and Motion
- Segmentation
- Texture Analysis

Multiple view Geometry for Robotics:

- Geometric transforms
- Projective geometry
- Camera Calibration
- Epipolar geometry
- Stereopsis
- Optical flow
- Tracking

Image Recognition

- Recognition of specific objects
- Recognition using Machine Learning, SVM, HOG features
- Recognition using Neural Networks
- Applications of Recognition

Short description of Projects

Homework 1

- Review of estimation
- LS estimation TLS estimation, LS with Regularization and RANSAC, applied to the problem of line fitting

Project 1: Color Segmentation with GMM

Detect the ball in images "seen" by Nao.

You will learn about Color imaging and about Clustering approaches (K-mean and GMMs)

Homework 2: Image Features and Warping

The project involves: corner detection and geometric transformations between image planes

Project 2: Panorama Stitching

Use the image features to derive the transformation between images and blend

Project 3: Segmentation with Graphcuts

Segment foreground from background in log-polar coordinates using Edge, Color, Texture, and Motion information.

Homework 3:Image classification using HOGs and Bag of Words

Project 4:Image classification using CNNs

cat cat

cat

cat

dog dog dog

dog

Training Data

Test Image

?

Write a CNN, then train it as a classifier