
CMSC 430, Feb 6th 2020

Abscond and Blackmail

1

First things first

2

First things first

• I messed up!

3

First things first

4

First things first

(define (get-elems bt)
 (match bt

 [(leaf) '()]
 [(node i left right)
 (cons i (append (get-elems left)

(get-elems right)))]))

5

First things first

(define (get-elems bt)
 (match bt

 [(leaf) '()]
 [(node i left right)
 (cons i (append (get-elems left)

(get-elems right)))]))

• Was correct!

6

First things first

7

First things first

• The problem was in how the functio was called

8

First things first

• The problem was in how the functio was called

sorry> (require "trees.rkt")
 (get-elems (node 1
 (leaf)
 (leaf)))

9

Second things second

10

Second things second

• One last things about quasiquoting

11

Second things second

• One last things about quasiquoting

• If the thing we want to unquote is a list, we can

use unquote splicing to put the elements of
the list directly in our structure

12

Second things second

• One last things about quasiquoting

• If the thing we want to unquote is a list, we can

use unquote splicing to put the elements of
the list directly in our structure

uqs> (define xs '(1 2 3))
 `(huh ,@xs)

13

Lastly, before we begin

14

Lastly, before we begin

• Read the lecture notes!

15

Lastly, before we begin

• Read the lecture notes!

It will be increasingly important as we progress
through the course

16

If you see what I mean

17

If you see what I mean

• There are several ways of defining a language

18

If you see what I mean

• There are several ways of defining a language

By example

19

If you see what I mean

• There are several ways of defining a language

By example

By informal description

20

If you see what I mean

• There are several ways of defining a language

By example

By informal description

Via reference implementation

21

If you see what I mean

• There are several ways of defining a language

By example

By informal description

Via reference implementation

With a formal (mathematical) semantics

22

How it’s made

23

How it’s made

• C

Informal Description

24

How it’s made

• OCaml

Defined by its implementation

25

How it’s made

• Standard ML

Fully formalized

26

How it’s made

• Python

Informal Description

Examples

Mostly defined by CPython?

27

How it’s made

• Haskell

Informal Description

Appeal to some formalism

28

Abscond

29

Abscond

• For our first language

30

Abscond

• For our first language

Formal Definition

31

Abscond

• For our first language

Formal Definition

Via reference implementation

32

Abscond

• For our first language

Formal Definition

Via reference implementation

• If everything is done right, the two should match*

33

Abscond’s AST

34

Abscond’s AST

• We’ve got expressions

35

Abscond’s AST

• We’ve got expressions

e ::= i

36

Abscond’s AST

• We’ve got expressions

e ::= i

• We’ve got ` i’s

37

Abscond’s AST

• We’ve got expressions

e ::= i

• We’ve got ` i’s

i ::= ℤ

38

Abscond’s AST

• We’ve got expressions

e ::= i

• We’ve got ` i’s

i ::= ℤ

• That’s it

39

Let’s argue semantics

40

Let’s argue semantics

• Abscond has an operational semantics:

41

Let’s argue semantics

• Abscond has an operational semantics:

We relate a program to its meaning via a

relation A[_,_]

42

Let’s argue semantics

• Abscond has an operational semantics:

We relate a program to its meaning via a

relation A[_,_]

• For Abscon we have only a single instance of this
relation because we only have a single kind of
expression

43

Let’s argue semantics

• Abscond has an operational semantics:

We relate a program to its meaning via a

relation A[_,_]

• For Abscon we have only a single instance of this
relation because we only have a single kind of
expression

A[i , i]

44

Let’s write an interpreter!

abs> (define (interp e)

45

What about compilers?

46

What about compilers?

• Having an interpreter is useful for a few reasons
(non-exhaustive):

47

What about compilers?

• Having an interpreter is useful for a few reasons
(non-exhaustive):

(tend to be) easier to reason about than
compilers

48

What about compilers?

• Having an interpreter is useful for a few reasons
(non-exhaustive):

(tend to be) easier to reason about than
compilers

Easier to experiment with language features

49

What about compilers?

• Having an interpreter is useful for a few reasons
(non-exhaustive):

(tend to be) easier to reason about than
compilers

Easier to experiment with language features

They let us ’borrow’ more from the host
language

50

What about compilers?

• Having an interpreter is useful for a few reasons
(non-exhaustive):

(tend to be) easier to reason about than
compilers

Easier to experiment with language features

They let us ’borrow’ more from the host
language

We can test our compiler against them!
(believe me, this is helpful!)

51

What about compilers?

52

What about compilers?

• Testing against a reference interpreter:

53

What about compilers?

• Testing against a reference interpreter:

(check-eqv? (source-interp e)
(target-interp (source-compile e)))

54

Running on our target (x86)

55

Running on our target (x86)

• Assume we had a compiler that could produce

x86 code

56

Running on our target (x86)

• Assume we had a compiler that could produce

x86 code

• Executables have to know where to start
execution

57

Running on our target (x86)

• Assume we had a compiler that could produce

x86 code

• Executables have to know where to start
execution

This is different from main()!

58

Running on our target (x86)

• Assume we had a compiler that could produce

x86 code

• Executables have to know where to start
execution

This is different from main()!

• We need a runtime system

59

A simple runtime system

60

A simple runtime system

#include <stdio.h>

#include <inttypes.h>

int64_t entry();

int main(int argc, char** argv) {

 int64_t result = entry();

 printf("%" PRId64 "\n", result);

 return 0;

}

61

The object we desire

62

The object we desire

• Let’s run the following to get a linkable RTS

gcc -m64 -c -o main.o main.c

63

What do we want?

64

What do we want?

• Let’s look at an example assembly file.

65

Making an AST

66

Making an AST

• In OCaml we’d make a few types:

67

Making an AST

• In OCaml we’d make a few types:

type Reg = RAX

68

Making an AST

• In OCaml we’d make a few types:

type Reg = RAX

type Arg = Int | Reg

69

Making an AST

• In OCaml we’d make a few types:

type Reg = RAX

type Arg = Int | Reg

type Lab = Symbol

70

Making an AST

• In OCaml we’d make a few types:

type Reg = RAX

type Arg = Int | Reg

type Lab = Symbol

type Inst = Lab | RET | MOV Arg Arg

71

Making an AST

• In OCaml we’d make a few types:

type Reg = RAX

type Arg = Int | Reg

type Lab = Symbol

type Inst = Lab | RET | MOV Arg Arg

type Asm = Inst list

72

Making an AST

• In OCaml we’d make a few types:

type Reg = RAX

type Arg = Int | Reg

type Lab = Symbol

type Inst = Lab | RET | MOV Arg Arg

type Asm = Inst list

• In Racket we will do none of that

73

Making an AST

• In OCaml we’d make a few types:

type Reg = RAX

type Arg = Int | Reg

type Lab = Symbol

type Inst = Lab | RET | MOV Arg Arg

type Asm = Inst list

• In Racket we will do none of that

Dynamic types!

74

Our first compiler

75

Our first compiler

abs> (define (compile e)

76

Our first compiler

abs> (define (compile e)

• lol

77

pretty-print

78

pretty-print

• Good: now we have the structure we want

79

pretty-print

• Good: now we have the structure we want

• Bad: Assemblers take flat strings, not racket
structures

80

pretty-print

• Good: now we have the structure we want

• Bad: Assemblers take flat strings, not racket
structures

• Solution: Write a pretty-printer

81

Settling an argument

82

Settling an argument

(define (arg->string a)
 (match a
 [`rax "rax"]
 [n (number->string n)]))

83

Settling an argument

84

Settling an argument

(define (instr->string i)
 (match i
 [`(mov ,a1 ,a2)

(string-append "\tmov "
(arg->string a1) ", "
(arg->string a2) "\n")]

 [`ret "\tret\n"]
 [l (string-append (label->string l) ":\n")]))

85

Settling an argument

(define (instr->string i)
 (match i
 [`(mov ,a1 ,a2)

(string-append "\tmov "
(arg->string a1) ", "
(arg->string a2) "\n")]

 [`ret "\tret\n"]
 [l (string-append (label->string l) ":\n")]))

• the rest are in the lecture notes online!

86

Take it for a spin

87

Our Second Compiler

88

Our Second Compiler

• Let’s add a feature to our compiler: incrementing
and decrementing.

89

Our Second Compiler

• Let’s add a feature to our compiler: incrementing
and decrementing.

• We’ll call it blackmail

90

Blackmail’s AST

91

Blackmail’s AST

• We’ve got expressions

92

Blackmail’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e

93

Blackmail’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e

• We’ve got ` i’s

94

Blackmail’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e

• We’ve got ` i’s

i ::= ℤ

95

Blackmail’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e

• We’ve got ` i’s

i ::= ℤ

• And we’ve got two functions:

96

Blackmail’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e

• We’ve got ` i’s

i ::= ℤ

• And we’ve got two functions:

add1 : ℤ → ℤ

97

Blackmail’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e

• We’ve got ` i’s

i ::= ℤ

• And we’ve got two functions:

add1 : ℤ → ℤ

sub1 : ℤ → ℤ

98

Blackmail’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e

• We’ve got ` i’s

i ::= ℤ

• And we’ve got two functions:

add1 : ℤ → ℤ

sub1 : ℤ → ℤ

• That’s it

99

It’s dangerous to go alone

100

It’s dangerous to go alone

• In Abscond, it was only integers, parsing was
trivial.

101

It’s dangerous to go alone

• In Abscond, it was only integers, parsing was
trivial.

Now we have to make sure what we have is
actually an expression.

102

It’s dangerous to go alone

• In Abscond, it was only integers, parsing was
trivial.

Now we have to make sure what we have is
actually an expression.

(define (expr? x)
 (match x
 [(? integer? i) #t]
 [`(add1 ,x) (expr? x)]
 [`(sub1 ,x) (expr? x)]
 [_ #f]))

103

It’s dangerous to go alone

• In Abscond, it was only integers, parsing was
trivial.

Now we have to make sure what we have is
actually an expression.

(define (expr? x)
 (match x
 [(? integer? i) #t]
 [`(add1 ,x) (expr? x)]
 [`(sub1 ,x) (expr? x)]
 [_ #f]))

• As mentioned on Tuesday, since we don’t have
static types, we can use validation like the above
to make sure our values are well formed

104

Blackmail is all about interpretation

105

Blackmail is all about interpretation

• In Abscond, interpreter was ’trivial’

106

Blackmail is all about interpretation

• In Abscond, interpreter was ’trivial’

For blackmail we have to think a bit more

107

Blackmail is all about interpretation

• In Abscond, interpreter was ’trivial’

For blackmail we have to think a bit more

(define (interp e)
 (match e
 [(? integer? i) i]
 [`(add1 ,e0)

(match (interp e0)
 [i0 (+ i0 1)])]

 [`(sub1 ,e0)
(match (interp e0)
 [i0 (- i0 1)])]))

108

Seeing how blackmail feels

109

What’s different about compilation?

110

What’s different about compilation?

• Runtime system?

111

What’s different about compilation?

• Runtime system?

• What about entry?

112

What’s different about compilation?

• Runtime system?

• What about entry?

• What about return?

113

What’s different about compilation?

• Runtime system?

• What about entry?

• What about return?

(define (compile e)
 (append '(entry)

(compile-e e)
'(ret)))

114

compile-e coyote

115

compile-e coyote

• Take a deep breath

116

compile-e coyote

• Take a deep breath

(define (compile-e e)
 (match e
 [(? integer? i) `((mov rax ,i))]
 [`(add1 ,e0)

(let ((c0 (compile-e e0)))
 `(,@c0

(add rax 1)))]
 [`(sub1 ,e0)

(let ((c0 (compile-e e0)))
 `(,@c0

(sub rax 1)))]))

117

Seeing how compiled blackmail feels

118

Assignment 2

• Details on the website

119

