
CMSC 430, Feb 6th 2020

Abscond and Blackmail
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First things first
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First things first

• I messed up!
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First things first

(define (get-elems bt)
   (match bt

  [(leaf) '()]
  [(node i left right)
   (cons i (append (get-elems left)

(get-elems right)))]))
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First things first

(define (get-elems bt)
   (match bt

  [(leaf) '()]
  [(node i left right)
   (cons i (append (get-elems left)

(get-elems right)))]))

• Was correct!
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First things first

• The problem was in how the functio was called
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First things first

• The problem was in how the functio was called

sorry> (require "trees.rkt")
     (get-elems (node 1
                      (leaf)
                      (leaf)))
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Second things second

• One last things about quasiquoting

• If the thing we want to unquote is a list, we can

use unquote splicing to put the elements of
the list directly in our structure

uqs> (define xs '(1 2 3))
     `(huh ,@xs)
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Lastly, before we begin

• Read the lecture notes!
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Lastly, before we begin

• Read the lecture notes!

It will be increasingly important as we progress
through the course
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If you see what I mean

• There are several ways of defining a language

By example

By informal description

Via reference implementation

With a formal (mathematical) semantics
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How it’s made
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How it’s made

• C

Informal Description
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How it’s made

• OCaml

Defined by its implementation
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How it’s made

• Standard ML

Fully formalized
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How it’s made

• Python

Informal Description

Examples

Mostly defined by CPython?
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How it’s made

• Haskell

Informal Description

Appeal to some formalism
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Abscond

• For our first language
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Abscond
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Abscond

• For our first language

Formal Definition

Via reference implementation
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Abscond

• For our first language

Formal Definition

Via reference implementation

• If everything is done right, the two should match*
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Abscond’s AST

• We’ve got expressions

e ::= i

• We’ve got ` i’s

i ::= ℤ

• That’s it
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expression
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Let’s argue semantics

• Abscond has an operational semantics:

We relate a program to its meaning via a

relation A[_,_]

• For Abscon we have only a single instance of this
relation because we only have a single kind of
expression

A[ i , i ]
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Let’s write an interpreter!

abs> (define (interp e)
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What about compilers?

• Having an interpreter is useful for a few reasons
(non-exhaustive):

(tend to be) easier to reason about than
compilers

Easier to experiment with language features

They let us ’borrow’ more from the host
language

We can test our compiler against them!
(believe me, this is helpful!)

51



What about compilers?
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What about compilers?

• Testing against a reference interpreter:
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What about compilers?

• Testing against a reference interpreter:

(check-eqv? (source-interp e)
(target-interp (source-compile e)))
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Running on our target (x86)

• Assume we had a compiler that could produce

x86 code

• Executables have to know where to start
execution

This is different from main()!

• We need a runtime system
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A simple runtime system
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A simple runtime system

#include <stdio.h>

#include <inttypes.h>

int64_t entry();

int main(int argc, char** argv) {

    int64_t result = entry();

    printf("%" PRId64 "\n", result);

    return 0;

}
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The object we desire
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The object we desire

• Let’s run the following to get a linkable RTS

gcc -m64 -c -o main.o main.c
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What do we want?
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What do we want?

• Let’s look at an example assembly file.
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• In OCaml we’d make a few types:
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Making an AST
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Making an AST

• In OCaml we’d make a few types:

type Reg = RAX

type Arg = Int | Reg

type Lab = Symbol

type Inst = Lab | RET | MOV Arg Arg

type Asm = Inst list

• In Racket we will do none of that

Dynamic types!
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Our first compiler

abs> (define (compile e)
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Our first compiler

abs> (define (compile e)

• lol
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pretty-print

• Good: now we have the structure we want

• Bad: Assemblers take flat strings, not racket
structures
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pretty-print

• Good: now we have the structure we want

• Bad: Assemblers take flat strings, not racket
structures

• Solution: Write a pretty-printer
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Settling an argument
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Settling an argument

(define (arg->string a)
  (match a
  [`rax "rax"]
  [n (number->string n)]))
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Settling an argument
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Settling an argument

(define (instr->string i)
  (match i
  [`(mov ,a1 ,a2)

(string-append "\tmov "
(arg->string a1) ", "
(arg->string a2) "\n")]

  [`ret "\tret\n"]
  [l (string-append (label->string l) ":\n")]))
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Settling an argument

(define (instr->string i)
  (match i
  [`(mov ,a1 ,a2)

(string-append "\tmov "
(arg->string a1) ", "
(arg->string a2) "\n")]

  [`ret "\tret\n"]
  [l (string-append (label->string l) ":\n")]))

• the rest are in the lecture notes online!
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Take it for a spin
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Our Second Compiler
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Our Second Compiler

• Let’s add a feature to our compiler: incrementing
and decrementing.
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Our Second Compiler

• Let’s add a feature to our compiler: incrementing
and decrementing.

• We’ll call it blackmail
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Blackmail’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e

• We’ve got ` i’s

i ::= ℤ

• And we’ve got two functions:

add1 : ℤ → ℤ
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• We’ve got ` i’s

i ::= ℤ
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Blackmail’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e

• We’ve got ` i’s

i ::= ℤ

• And we’ve got two functions:

add1 : ℤ → ℤ

sub1 : ℤ → ℤ

• That’s it
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It’s dangerous to go alone

• In Abscond, it was only integers, parsing was
trivial.

Now we have to make sure what we have is
actually an expression.

(define (expr? x)
  (match x
  [(? integer? i) #t]
  [`(add1 ,x) (expr? x)]
  [`(sub1 ,x) (expr? x)]
  [_ #f]))
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It’s dangerous to go alone

• In Abscond, it was only integers, parsing was
trivial.

Now we have to make sure what we have is
actually an expression.

(define (expr? x)
  (match x
  [(? integer? i) #t]
  [`(add1 ,x) (expr? x)]
  [`(sub1 ,x) (expr? x)]
  [_ #f]))

• As mentioned on Tuesday, since we don’t have
static types, we can use validation like the above
to make sure our values are well formed
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Blackmail is all about interpretation

• In Abscond, interpreter was ’trivial’

For blackmail we have to think a bit more

(define (interp e)
  (match e
  [(? integer? i) i]
  [`(add1 ,e0)

(match (interp e0)
  [i0 (+ i0 1)])]

  [`(sub1 ,e0)
(match (interp e0)
  [i0 (- i0 1)])]))
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Seeing how blackmail feels
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What’s different about compilation?

• Runtime system?

• What about entry?

• What about return?

(define (compile e)
  (append '(entry)

(compile-e e)
'(ret)))
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compile-e coyote
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compile-e coyote

• Take a deep breath
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compile-e coyote

• Take a deep breath

(define (compile-e e)
  (match e
  [(? integer? i) `((mov rax ,i))]
  [`(add1 ,e0)

(let ((c0 (compile-e e0)))
  `(,@c0

(add rax 1)))]
  [`(sub1 ,e0)

(let ((c0 (compile-e e0)))
  `(,@c0

(sub rax 1)))]))
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Seeing how compiled blackmail feels
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Assignment 2

• Details on the website

119


