
CMSC 430, Feb 11th 2020

Con

1

First things first

2

First things first

• Reflection on what a compiler is

3

Recap

4

Recap

• Compilers translate a source language to some
target language

5

Recap

6

Recap

• In this class we will have many source lanagues

7

Recap

• In this class we will have many source lanagues

• We will only have one target language

8

Our languages so far:

9

Our languages so far:

• The two languages so far are quite limited but still
interesting

10

Our languages so far:

• The two languages so far are quite limited but still
interesting

We could extend the runtime system to allow
some sort of integer-IO

11

Our languages so far:

• The two languages so far are quite limited but still
interesting

We could extend the runtime system to allow
some sort of integer-IO

We could imagine `finishing up’ a
calculator-like language

12

Our languages so far:

• The two languages so far are quite limited but still
interesting

We could extend the runtime system to allow
some sort of integer-IO

We could imagine `finishing up’ a
calculator-like language

• However there are a few things that, without them,
we’d be hamstrung in developing more
sophisticated languages

13

Our languages so far:

• The two languages so far are quite limited but still
interesting

We could extend the runtime system to allow
some sort of integer-IO

We could imagine `finishing up’ a
calculator-like language

• However there are a few things that, without them,
we’d be hamstrung in developing more
sophisticated languages

We’d like to be able to name things: variables

14

Our languages so far:

• The two languages so far are quite limited but still
interesting

We could extend the runtime system to allow
some sort of integer-IO

We could imagine `finishing up’ a
calculator-like language

• However there are a few things that, without them,
we’d be hamstrung in developing more
sophisticated languages

We’d like to be able to name things: variables

We’d like to be able to make decisions, i.e.
perform branching

15

Language du jour

16

Language du jour

• We will look at naming things next week

17

Language du jour

• We will look at naming things next week

• Today, we will look at branching via conditionals

18

Language du jour

• We will look at naming things next week

• Today, we will look at branching via conditionals

Because we want to focus on the branching
aspect, we will not introduce booleans (yet!)

19

Language du jour

• We will look at naming things next week

• Today, we will look at branching via conditionals

Because we want to focus on the branching
aspect, we will not introduce booleans (yet!)

Instead we will allow only a single predicate,
that we define up-front

20

Con

21

Con

• Our language Con is going to extend blackmail
with only one new syntactic feature

22

Con’s AST

23

Con’s AST

• We’ve got expressions

24

Con’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e | if (zero? e) e e

25

Con’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e | if (zero? e) e e

• Everything works, as before...

26

Con’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e | if (zero? e) e e

• Everything works, as before...

but now we can decide between two programs
depending on whether some expression

results in 0

27

Con’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e | if (zero? e) e e

• Everything works, as before...

but now we can decide between two programs
depending on whether some expression

results in 0

• Important Point:

28

Con’s AST

• We’ve got expressions

e ::= i | add1 e | sub1 e | if (zero? e) e e

• Everything works, as before...

but now we can decide between two programs
depending on whether some expression

results in 0

• Important Point:

This does not mean we have booleans!

29

Part-n Parse-L

30

Part-n Parse-L

• Extending our parser/validator is not too difficult

31

Part-n Parse-L

• Extending our parser/validator is not too difficult

(define (expr? x)
 (match x
 [(? integer? i) #t]
 [`(add1 ,x) (expr? x)]
 [`(sub1 ,x) (expr? x)]
 [`(if (zero? ,x) ,y ,z)

(and (expr? x)
(expr? y)
(expr? z))]

 [_ #f]))

32

What does it mean?

33

What does it mean?

• This is a job for semantics

34

Some Antics

35

Some Antics

• The meaning of integers is unchanged since

abscond

36

Some Antics

• The meaning of integers is unchanged since

abscond

37

Some Antics

38

Some Antics

• The meaning of add1/sub1 is unchanged since

blackmail

39

Some Antics

• The meaning of add1/sub1 is unchanged since

blackmail

40

Some Antics

• The meaning of add1/sub1 is unchanged since

blackmail

41

Some Antics

42

Some Antics

• The new stuff in con

43

Some Antics

• The new stuff in con

44

Some Antics

• The new stuff in con

45

Semantics -> Interpreter

• The interpreter can still fit on a single slide

46

Semantics -> Interpreter

• The interpreter can still fit on a single slide

(define (interp e)
 (match e
 [(? integer? i) i]
 [`(add1 ,e0)

(+ (interp e0) 1)]
 [`(sub1 ,e0)

(- (interp e0) 1)]
 [`(if (zero? ,e0) ,e1 ,e2)

(if (zero? (interp e0))
(interp e1)
(interp e2))]))

47

Semantics -> Interpreter

• But let’s just focus on the new bit:

(define (interp e)
 (match e
 (...)
 [`(if (zero? ,e0) ,e1 ,e2)

(if (zero? (interp e0))
(interp e1)
(interp e2))]))

48

Semantics -> Interpreter

• But let’s just focus on the new bit:

(define (interp e)
 (match e
 (...)
 [`(if (zero? ,e0) ,e1 ,e2)

(if (zero? (interp e0))
(interp e1)
(interp e2))]))

• the zero? functions are not the same!

49

Semantics -> Interpreter

• But let’s just focus on the new bit:

(define (interp e)
 (match e
 (...)
 [`(if (zero? ,e0) ,e1 ,e2)

(if (zero? (interp e0))
(interp e1)
(interp e2))]))

• the zero? functions are not the same!

con has no notion of booleans (yet!)

50

Let’s think through two examples

• Example 1

51

Let’s think through two examples

• Example 1

(if (zero? 8) 2 3)

52

Let’s think through two examples

• Example 2

53

Let’s think through two examples

• Example 2

(if (zero? (add1 -1)) (sub1 2) 3)

54

Follow these instructions

• Here is a quick overview of some useful
instructions:

• CMP

55

Follow these instructions

• Here is a quick overview of some useful
instructions:

• CMP

CMP RAX, imm32

56

Follow these instructions

• Here is a quick overview of some useful
instructions:

• CMP

CMP RAX, imm32

• imm32 sign-extended to 64-bits with RAX.

limit of 32 bit immediate not an issue for us
(always 0)

57

Follow these instructions

• Here is a quick overview of some useful
instructions:

• JMP

58

Follow these instructions

• Here is a quick overview of some useful
instructions:

• JMP

JMP <label>

59

Follow these instructions

• Here is a quick overview of some useful
instructions:

• JMP

JMP <label>

• Jump to an absolute address

we are going to let the assembler deal with
whether it’s direct of indirect

60

Follow these instructions

• Here is a quick overview of some useful
instructions:

• JNE

61

Follow these instructions

• Here is a quick overview of some useful
instructions:

• JNE

JNE <label>

62

Follow these instructions

• Here is a quick overview of some useful
instructions:

• JNE

JNE <label>

• IFF ZF!=0 jump to absolute address

we are going to let the assembler deal with
whether it’s direct of indirect

63

Follow these instructions

• Here is a quick overview of some useful
instructions:

• JE

64

Follow these instructions

• Here is a quick overview of some useful
instructions:

• JE

JE <label>

65

Follow these instructions

• Here is a quick overview of some useful
instructions:

• JE

JE <label>

• IFF ZF==0 jump to absolute address

we are going to let the assembler deal with
whether it’s direct of indirect

66

Let’s write it!

67

