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First things first

» Consider the following Racket code

(Let ((y 5))
(lambda (x) (cons x y)))

e |s X “free’?

e |sy free'?
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Our languages so far:

« We can branch based on computed values, but
it's a bit clunky

o We'd like to a) understand the clunkiness, and
b) fix it
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Language du jour

« Today, we will double the number of types we can
deal with!

© Right now, we've only got integers

o By the end of today we’ll have integers and
booleans
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Dupe

« Our language Dupe is going to modify and extend
con
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Con’s AST

e Let’s review

oe ::=1 | addl e | subl e | 1f (zero? e) e e

* This is clunky

o 1f is "hard coded’ to dispatch based on
zero? and can do nothing else

- Let's make 1f be more like what we experience in
other languages

° It should dispatch on arbitrary boolean
expressions!
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Dupe’s AST

« Some changes:
ce ::= ... | 1f e e e | zero? e
* This is less clunky

o 1f is no longer “hard coded’ to dispatch based
on zero?

- 1f is now more like what we experience in other
languages

° Thing to think about:

o Why do we still need zero? (if at all)
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Valley Date

« Syntax validation for Dupe is just what you might
expect

(define (expr? x)
(match x
[ (? integer?) #t]
[(? boolean?) #t]
" (addl ,x) (expr? x)]
" (subl ,x) (expr? x)]
" (zero? ,x) (expr? x)]
[ (1f ,x ,y ,2)
(and (expr? x)
(expr? vy)
(expr? z))]

[_ #f]))
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« The meaning of integers is subsumed by a
meaning for values

D[v, v]
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Some Ant, ick!

« The meaning of add1l/subl is unchanged since
blackmail

Dl]:eo, 10]] i1 = io + 1
D[ (add1 ey), i;]

Dley, io] I =1p-1
D[[(SUb1 eo), 11]]
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Some Ant, ick!

« The meaning of 1f has changed a bit

Dleo, vo] is-true[ve] Dles, vi]
D[ (if ey e; e2), vi]

DIIeo, Vo]] iS'falseﬂ.Vo]] D[[ez, Vz]]

D (if ep e; €2), V2]
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« Now we need a separate meaning for zero?
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Some Ant, ick!

« Now we need a separate meaning for zero?

Dle,, i] i=0
D[ (zero? ey), #t]

Dley, i] 1#0
D[ (zero? ey), #f1]
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Some Ant, ick!

- Let’s take a look at 1f again, with some helper
rules

Dle,, i] i=0 Dle,, i] i#0
D[ (zero? ey), #t] D[ (zero? ey), #{]

is-true[] #t] is-false[[ #1] is-truel[i]
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* What do you expect them to do (i.e. what do the
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Things to consider

« All of the following are syntactically valid programs

* What do you expect them to do (i.e. what do the
semantics say about them)?

(1f 0 1 2)

(1f (zero? 1) 1 2)
(if #t 1 2)

(1f #t (addl #f) 2)
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Let’s look at the interpreter

We'll do that in the terminal, as it's starting to get a bit too cumbersome
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Let's experiment

dupe> (require "dupe_interp.rkt")
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Things are bit tricky

* Now let’s think about generating x86 code

 Clearly, #f is not the same as 0

o How do we make sure that the values from the
different types don’t get mixed up?
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** several people are typing...

 This is the crux of a type system
* Different type systems have different tradeoffs

« We are going to implement a dynamic type
system

© What does this imply about how our
implementation doesn't get values from
different types mixed up?
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Tag your int

Value bits (63b)
I

N

Tag bit (1b)2
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Tag your int

« We have to choose: which type gets 1?

« Either can work, but we'll argue that booleans
should get the 1
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Tag your int

« What does this imply about our

© Runtime system?
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Tag your int

« What does this imply about our
© Runtime system?

o Compiler?

83



Let’s take a look at the RTS and compiler
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Assignment 3

« Will go live tomorrow

o Please tell your fellow students to check the
webpage periodically

o If there are any issues that might make you
unable to do the assignment on time,
talk to me
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