
CMSC 430, Feb 13th 2020

Dupe

1

First things first

2

First things first

• Consider the following Racket code

3

First things first

• Consider the following Racket code

x

4

First things first

• Consider the following Racket code

x

• Is x `free’?

5

First things first

• Consider the following Racket code

(cons x y)

6

First things first

• Consider the following Racket code

(cons x y)

• Is x `free’?

7

First things first

• Consider the following Racket code

(cons x y)

• Is x `free’?

• Is y `free’?

8

First things first

• Consider the following Racket code

(lambda (x) (cons x y))

9

First things first

• Consider the following Racket code

(lambda (x) (cons x y))

• Is x `free’?

10

First things first

• Consider the following Racket code

(lambda (x) (cons x y))

• Is x `free’?

• Is y `free’?

11

First things first

• Consider the following Racket code

(let ((y 5))
(lambda (x) (cons x y)))

12

First things first

• Consider the following Racket code

(let ((y 5))
(lambda (x) (cons x y)))

• Is x `free’?

13

First things first

• Consider the following Racket code

(let ((y 5))
(lambda (x) (cons x y)))

• Is x `free’?

• Is y `free’?

14

Our languages so far:

15

Our languages so far:

• We can branch based on computed values, but
it’s a bit clunky

We’d like to a) understand the clunkiness, and
b) fix it

16

Language du jour

17

Language du jour

• Today, we will double the number of types we can
deal with!

18

Language du jour

• Today, we will double the number of types we can
deal with!

Right now, we’ve only got integers

19

Language du jour

• Today, we will double the number of types we can
deal with!

Right now, we’ve only got integers

By the end of today we’ll have integers and
booleans

20

Dupe

21

Dupe

• Our language Dupe is going to modify and extend

con

22

Con’s AST

23

Con’s AST

• Let’s review

24

Con’s AST

• Let’s review

e ::= i | add1 e | sub1 e | if (zero? e) e e

25

Con’s AST

• Let’s review

e ::= i | add1 e | sub1 e | if (zero? e) e e

• This is clunky

26

Con’s AST

• Let’s review

e ::= i | add1 e | sub1 e | if (zero? e) e e

• This is clunky

if is `hard coded’ to dispatch based on

zero? and can do nothing else

27

Con’s AST

• Let’s review

e ::= i | add1 e | sub1 e | if (zero? e) e e

• This is clunky

if is `hard coded’ to dispatch based on

zero? and can do nothing else

• Let’s make if be more like what we experience in
other languages

28

Con’s AST

• Let’s review

e ::= i | add1 e | sub1 e | if (zero? e) e e

• This is clunky

if is `hard coded’ to dispatch based on

zero? and can do nothing else

• Let’s make if be more like what we experience in
other languages

It should dispatch on arbitrary boolean
expressions!

29

Dupe’s AST

30

Dupe’s AST

• Some changes:

31

Dupe’s AST

• Some changes:

e ::= ... | if e e e | zero? e

32

Dupe’s AST

• Some changes:

e ::= ... | if e e e | zero? e

• This is less clunky

33

Dupe’s AST

• Some changes:

e ::= ... | if e e e | zero? e

• This is less clunky

if is no longer `hard coded’ to dispatch based

on zero?

34

Dupe’s AST

• Some changes:

e ::= ... | if e e e | zero? e

• This is less clunky

if is no longer `hard coded’ to dispatch based

on zero?

• if is now more like what we experience in other
languages

35

Dupe’s AST

• Some changes:

e ::= ... | if e e e | zero? e

• This is less clunky

if is no longer `hard coded’ to dispatch based

on zero?

• if is now more like what we experience in other
languages

Thing to think about:

36

Dupe’s AST

• Some changes:

e ::= ... | if e e e | zero? e

• This is less clunky

if is no longer `hard coded’ to dispatch based

on zero?

• if is now more like what we experience in other
languages

Thing to think about:

Why do we still need zero? (if at all)

37

Valley Date

• Syntax validation for Dupe is just what you might
expect

38

Valley Date

• Syntax validation for Dupe is just what you might
expect

(define (expr? x)
 (match x
 [(? integer?) #t]
 [(? boolean?) #t]
 [`(add1 ,x) (expr? x)]
 [`(sub1 ,x) (expr? x)]
 [`(zero? ,x) (expr? x)]
 [`(if ,x ,y ,z)

(and (expr? x)
(expr? y)
(expr? z))]

 [_ #f]))

39

Some Ant, ick!

40

Some Ant, ick!

• The meaning of integers is subsumed by a
meaning for values

41

Some Ant, ick!

• The meaning of integers is subsumed by a
meaning for values

42

Some Ant, ick!

43

Some Ant, ick!

• The meaning of add1/sub1 is unchanged since

blackmail

44

Some Ant, ick!

• The meaning of add1/sub1 is unchanged since

blackmail

45

Some Ant, ick!

• The meaning of add1/sub1 is unchanged since

blackmail

46

Some Ant, ick!

47

Some Ant, ick!

• The meaning of if has changed a bit

48

Some Ant, ick!

• The meaning of if has changed a bit

49

Some Ant, ick!

• The meaning of if has changed a bit

50

Some Ant, ick!

51

Some Ant, ick!

• Now we need a separate meaning for zero?

52

Some Ant, ick!

• Now we need a separate meaning for zero?

53

Some Ant, ick!

• Now we need a separate meaning for zero?

54

Some Ant, ick!

55

Some Ant, ick!

• Let’s take a look at if again, with some helper
rules

56

Some Ant, ick!

• Let’s take a look at if again, with some helper
rules

57

Things to consider

58

Things to consider

• All of the following are syntactically valid programs

59

Things to consider

• All of the following are syntactically valid programs

• What do you expect them to do (i.e. what do the
semantics say about them)?

60

Things to consider

• All of the following are syntactically valid programs

• What do you expect them to do (i.e. what do the
semantics say about them)?

(if 0 1 2)

61

Things to consider

• All of the following are syntactically valid programs

• What do you expect them to do (i.e. what do the
semantics say about them)?

(if 0 1 2)

(if (zero? 1) 1 2)

(if #t 1 2)

62

Things to consider

• All of the following are syntactically valid programs

• What do you expect them to do (i.e. what do the
semantics say about them)?

(if 0 1 2)

(if (zero? 1) 1 2)

(if #t 1 2)

(if #t (add1 #f) 2)

63

Let’s look at the interpreter

We'll do that in the terminal, as it's starting to get a bit too cumbersome

64

Let’s experiment

dupe> (require "dupe_interp.rkt")

65

Things are bit tricky

66

Things are bit tricky

• Now let’s think about generating x86 code

67

Things are bit tricky

• Now let’s think about generating x86 code

• Clearly, #f is not the same as 0

68

Things are bit tricky

• Now let’s think about generating x86 code

• Clearly, #f is not the same as 0

How do we make sure that the values from the
different types don’t get mixed up?

69

** several people are typing...

70

** several people are typing...

• This is the crux of a type system

71

** several people are typing...

• This is the crux of a type system

• Different type systems have different tradeoffs

72

** several people are typing...

• This is the crux of a type system

• Different type systems have different tradeoffs

• We are going to implement a dynamic type
system

73

** several people are typing...

• This is the crux of a type system

• Different type systems have different tradeoffs

• We are going to implement a dynamic type
system

What does this imply about how our
implementation doesn’t get values from
different types mixed up?

74

Tag your int

75

Tag your int

76

Tag your int

77

Tag your int

• We have to choose: which type gets 1?

78

Tag your int

• We have to choose: which type gets 1?

• Either can work, but we’ll argue that booleans
should get the 1

79

Tag your int

80

Tag your int

• What does this imply about our

81

Tag your int

• What does this imply about our

Runtime system?

82

Tag your int

• What does this imply about our

Runtime system?

Compiler?

83

Let’s take a look at the RTS and compiler

84

Assignment 3

• Will go live tomorrow

Please tell your fellow students to check the
webpage periodically

If there are any issues that might make you
unable to do the assignment on time,
talk to me

85

