CMSC 430, Feb 13th 2020

Dupe

First things first

First things first

» Consider the following Racket code

First things first

» Consider the following Racket code

X

First things first

» Consider the following Racket code
X

e |s X “free’?

First things first

» Consider the following Racket code

(cons x y)

First things first

» Consider the following Racket code
(cons x y)

e |s X “free’?

First things first

» Consider the following Racket code
(cons x y)
e |s X “free’?

e Isy free’?

First things first

» Consider the following Racket code

(Lambda (x) (cons x y))

First things first

» Consider the following Racket code
(Lambda (x) (cons x y))

e |s X “free’?

10

First things first

» Consider the following Racket code
(Lambda (x) (cons x y))
e |s X “free’?

e Isy free’?

11

First things first

» Consider the following Racket code

(Let ((y 5))
(lambda (x) (cons x y)))

12

First things first

» Consider the following Racket code

(Let ((y 5))
(lambda (x) (cons x y)))

e |s X “free’?

13

First things first

» Consider the following Racket code

(Let ((y 5))
(lambda (x) (cons x y)))

e |s X “free’?

e |sy free'?

14

Our languages so far:

15

Our languages so far:

« We can branch based on computed values, but
it's a bit clunky

o We'd like to a) understand the clunkiness, and
b) fix it

16

Language du jour

17

Language du jour

« Today, we will double the number of types we can
deal with!

18

Language du jour

« Today, we will double the number of types we can
deal with!

© Right now, we've only got integers

19

Language du jour

« Today, we will double the number of types we can
deal with!

© Right now, we've only got integers

o By the end of today we’ll have integers and
booleans

20

Dupe

21

Dupe

« Our language Dupe is going to modify and extend
con

22

Con’s AST

23

e Let’s review

Con’s AST

24

Con’s AST

e Let’s review

ce ..

1| addl e | subl e | 1f (zero? e) e e

25

Con’s AST

e Let’s review

oe ::=1 | addl e | subl e | 1f (zero? e) e e

* This is clunky

26

Con’s AST

* Let’s review
oe ::=1 | addl e | subl e | 1f (zero? e) e e
* This is clunky

o 1f is "hard coded’ to dispatch based on
zero? and can do nothing else

27

Con’s AST

* Let’s review
oe ::=1 | addl e | subl e | 1f (zero? e) e e
* This is clunky

o 1f is "hard coded’ to dispatch based on
zero? and can do nothing else

- Let's make 1f be more like what we experience in
other languages

28

Con’s AST

e Let’s review

oe ::=1 | addl e | subl e | 1f (zero? e) e e

* This is clunky

o 1f is "hard coded’ to dispatch based on
zero? and can do nothing else

- Let's make 1f be more like what we experience in
other languages

° It should dispatch on arbitrary boolean
expressions!

29

Dupe’s AST

30

« Some changes:

Dupe’s AST

31

« Some changes:

Dupe’s AST

| 1f e e e | zero? e

32

Dupe’s AST

« Some changes:
ce ::= ... | 1f e e e | zero? e

* This is less clunky

33

Dupe’s AST

« Some changes:
ce ::= ... | 1f e e e | zero? e
* This is less clunky

o 1f is no longer “hard coded’ to dispatch based
on zero?

34

Dupe’s AST

« Some changes:
ce ::= ... | 1f e e e | zero? e
* This is less clunky

o 1f is no longer “hard coded’ to dispatch based
on zero?

- 1f is now more like what we experience in other
languages

35

Dupe’s AST

« Some changes:
ce ::= ... | 1f e e e | zero? e
* This is less clunky

o 1f is no longer “hard coded’ to dispatch based
on zero?

- 1f is now more like what we experience in other
languages

° Thing to think about:

36

Dupe’s AST

« Some changes:
ce ::= ... | 1f e e e | zero? e
* This is less clunky

o 1f is no longer “hard coded’ to dispatch based
on zero?

- 1f is now more like what we experience in other
languages

° Thing to think about:

o Why do we still need zero? (if at all)

37

Valley Date

« Syntax validation for Dupe is just what you might
expect

38

Valley Date

« Syntax validation for Dupe is just what you might
expect

(define (expr? x)
(match x
[(? integer?) #t]
[(? boolean?) #t]
" (addl ,x) (expr? x)]
" (subl ,x) (expr? x)]
" (zero? ,x) (expr? x)]
[(1f ,x ,y ,2)
(and (expr? x)
(expr? vy)
(expr? z))]

[_ #f]))

39

Some Ant, ick!

40

Some Ant, ick!

« The meaning of integers is subsumed by a
meaning for values

41

Some Ant, ick!

« The meaning of integers is subsumed by a
meaning for values

D[v, v]

42

Some Ant, ick!

43

Some Ant, ick!

« The meaning of add1l/subl is unchanged since
blackmail

44

Some Ant, ick!

« The meaning of add1l/subl is unchanged since
blackmail

D[[eo, lo]] i] — io + 1
D[(add1 ey), i;]

45

Some Ant, ick!

« The meaning of add1l/subl is unchanged since
blackmail

Dl]:eo, 10]] i1 = io + 1
D[(add1 ey), i;]

Dley, io] I =1p-1
D[[(SUb1 eo), 11]]

46

Some Ant, ick!

47

Some Ant, ick!

« The meaning of 1f has changed a bit

48

Some Ant, ick!

« The meaning of 1f has changed a bit

Dleo, vo] is-true[ve] Dles, vi]

D[(if ep e; e2), vi]

49

Some Ant, ick!

« The meaning of 1f has changed a bit

Dleo, vo] is-true[ve] Dles, vi]
D[(if ey e; e2), vi]

DIIeo, Vo]] iS'falseﬂ.Vo]] D[[ez, Vz]]

D (if ep e; €2), V2]

50

Some Ant, ick!

51

Some Ant, ick!

« Now we need a separate meaning for zero?

52

Some Ant, ick!

« Now we need a separate meaning for zero?

D[[eo, l]] 1=0
D[(zero? ey), #t]

53

Some Ant, ick!

« Now we need a separate meaning for zero?

Dle,, i] i=0
D[(zero? ey), #t]

Dley, i] 1#0
D[(zero? ey), #f1]

54

Some Ant, ick!

55

Some Ant, ick!

- Let’s take a look at 1f again, with some helper
rules

56

Some Ant, ick!

- Let’s take a look at 1f again, with some helper
rules

Dle,, i] i=0 Dle,, i] i#0
D[(zero? ey), #t] D[(zero? ey), #{]

is-true[] #t] is-false[[#1] is-truel[i]

57

Things to consider

58

Things to consider

« All of the following are syntactically valid programs

59

Things to consider

« All of the following are syntactically valid programs

* What do you expect them to do (i.e. what do the
semantics say about them)?

60

Things to consider

« All of the following are syntactically valid programs

* What do you expect them to do (i.e. what do the
semantics say about them)?

(1f 0 1 2)

61

Things to consider

« All of the following are syntactically valid programs

* What do you expect them to do (i.e. what do the
semantics say about them)?

(1f 0 1 2)
(1f (zero? 1) 1 2)
(if #t 1 2)

62

Things to consider

« All of the following are syntactically valid programs

* What do you expect them to do (i.e. what do the
semantics say about them)?

(1f 0 1 2)

(1f (zero? 1) 1 2)
(if #t 1 2)

(1f #t (addl #f) 2)

63

Let’s look at the interpreter

We'll do that in the terminal, as it's starting to get a bit too cumbersome

64

Let's experiment

dupe> (require "dupe_interp.rkt")

65

Things are bit tricky

66

Things are bit tricky

* Now let’s think about generating x86 code

67

Things are bit tricky

* Now let’s think about generating x86 code

 Clearly, #f is not the same as 0

68

Things are bit tricky

* Now let’s think about generating x86 code

 Clearly, #f is not the same as 0

o How do we make sure that the values from the
different types don’t get mixed up?

69

** several people are typing...

70

** several people are typing...

 This is the crux of a type system

71

** several people are typing...

 This is the crux of a type system

* Different type systems have different tradeoffs

72

** several people are typing...

 This is the crux of a type system
* Different type systems have different tradeoffs

« We are going to implement a dynamic type
system

73

** several people are typing...

 This is the crux of a type system
* Different type systems have different tradeoffs

« We are going to implement a dynamic type
system

© What does this imply about how our
implementation doesn't get values from
different types mixed up?

74

Tag your int

75

Tag your int

Value bits (63b)
I

N

Tag bit (1b)2

76

Tag your int

77

Tag your int

« We have to choose: which type gets 1?

78

Tag your int

« We have to choose: which type gets 1?

« Either can work, but we'll argue that booleans
should get the 1

79

Tag your int

80

Tag your int

« What does this imply about our

81

Tag your int

« What does this imply about our

© Runtime system?

82

Tag your int

« What does this imply about our
© Runtime system?

o Compiler?

83

Let’s take a look at the RTS and compiler

84

Assignment 3

« Will go live tomorrow

o Please tell your fellow students to check the
webpage periodically

o If there are any issues that might make you
unable to do the assignment on time,
talk to me

85

