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Our languages so far:

• We can branch based on computed values, but
it’s a bit clunky

We’d like to a) understand the clunkiness, and
b) fix it
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Language du jour

• Today, we will double the number of types we can
deal with!

Right now, we’ve only got integers

By the end of today we’ll have integers and
booleans
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• Our language Dupe is going to modify and extend

con
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Con’s AST

• Let’s review

e ::= i | add1 e | sub1 e | if (zero? e) e e

• This is clunky

if is `hard coded’ to dispatch based on

zero? and can do nothing else

• Let’s make if be more like what we experience in
other languages

It should dispatch on arbitrary boolean
expressions!
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Dupe’s AST

• Some changes:

e ::= ... | if e e e | zero? e

• This is less clunky

if is no longer `hard coded’ to dispatch based

on zero?

• if is now more like what we experience in other
languages

Thing to think about:

Why do we still need zero? (if at all)
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Valley Date

• Syntax validation for Dupe is just what you might
expect

(define (expr? x)
  (match x
  [(? integer?) #t]
  [(? boolean?) #t]
  [`(add1 ,x) (expr? x)]
  [`(sub1 ,x) (expr? x)]
  [`(zero? ,x) (expr? x)]
  [`(if ,x ,y ,z)

(and (expr? x)
(expr? y)
(expr? z))]

  [_ #f]))
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Things to consider

• All of the following are syntactically valid programs

• What do you expect them to do (i.e. what do the
semantics say about them)?

(if 0 1 2)
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Things to consider

• All of the following are syntactically valid programs

• What do you expect them to do (i.e. what do the
semantics say about them)?

(if 0 1 2)

(if (zero? 1) 1 2)

(if #t 1 2)

(if #t (add1 #f) 2)
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Let’s look at the interpreter

We'll do that in the terminal, as it's starting to get a bit too cumbersome
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Let’s experiment

dupe> (require "dupe_interp.rkt")
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Things are bit tricky

• Now let’s think about generating x86 code

• Clearly, #f is not the same as 0

How do we make sure that the values from the
different types don’t get mixed up?
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** several people are typing...

• This is the crux of a type system

• Different type systems have different tradeoffs

• We are going to implement a dynamic type
system

What does this imply about how our
implementation doesn’t get values from
different types mixed up?
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Tag your int

• We have to choose: which type gets 1?

• Either can work, but we’ll argue that booleans
should get the 1
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Tag your int

• What does this imply about our

Runtime system?

Compiler?
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Let’s take a look at the RTS and compiler
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Assignment 3

• Will go live tomorrow

Please tell your fellow students to check the
webpage periodically

If there are any issues that might make you
unable to do the assignment on time,
talk to me
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