CMSC 430, Feb 18th 2020

Extort

First things first

First things first

« Assignment #2

First things first

« Assignment #2

© Thanks to those of you that turned it in!

First things first

« Assignment #2
© Thanks to those of you that turned it in!

© Hoping to get grading done by the end of the
week.

First things first

« Assignment #2
© Thanks to those of you that turned it in!

© Hoping to get grading done by the end of the
week.

« TWO Issues:

First things first

« Assignment #2
© Thanks to those of you that turned it in!

© Hoping to get grading done by the end of the
week.

« TWO Issues:

o One of my TAs is going to disambiguate github
ID <-> UID. If you have concerns about that,
contact me ASAP

First things first

« Assignment #2
© Thanks to those of you that turned it in!

© Hoping to get grading done by the end of the
week.

« TWO Issues:

o One of my TAs is going to disambiguate github
ID <-> UID. If you have concerns about that,
contact me ASAP

o Without ELMS/Canvas, how can | best
communicate grades?

We've been Duped

We've been Duped

« On Thursday we saw that even though we have
two types and a semantics for our programs,
there’s all sorts of undefined behaviour.

10

We've been Duped

« On Thursday we saw that even though we have
two types and a semantics for our programs,
there’s all sorts of undefined behaviour.

* One strange consequence of this was that our
interpreter and compiler behaved differently!

11

We've been Duped

« On Thursday we saw that even though we have
two types and a semantics for our programs,
there’s all sorts of undefined behaviour.

* One strange consequence of this was that our
interpreter and compiler behaved differently!

© Why?

12

Addressing the error of our ways

13

Addressing the error of our ways

« Recap from last time:

14

Addressing the error of our ways

« Recap from last time:

(addl #f)

15

Addressing the error of our ways

« Recap from last time:

16

Addressing the error of our ways

« Recap from last time:

(zero? #f)

17

Addressing the error of our ways

« Recap from last time:

18

Addressing the error of our ways

« Recap from last time:

(1f (zero? #f) 1 2)

19

Addressing the error of our ways

« Recap from last time:

(1f (zero? #f) 1 2)

 Previously, these were undefined

20

Addressing the error of our ways

« Recap from last time:
(1f (zero? #f) 1 2)
 Previously, these were undefined

o |n our interpreter we would get a failure
because of the errors from the underlying
Racket execution

21

Addressing the error of our ways

« Recap from last time:
(1f (zero? #f) 1 2)
 Previously, these were undefined

o |n our interpreter we would get a failure
because of the errors from the underlying
Racket execution

° In our compiler we’'d get junk

22

Extort

23

Extort

« Our language extort the same as dupe except
we address errors explicitely

24

Extort's AST

25

* No changes:

Extort's AST

26

* No changes:

Extort's AST

| 1f e e e | zero? e

27

Extort's AST

* No changes:
ce 1:= ... | 1f e e e | zero? e
o Why don’t we need to change the AST?

28

C’est man-tick

29

C’est man-tick

« Type mismatches in dupe were undefined
behavior

30

C’est man-tick

« Type mismatches in dupe were undefined
behavior

o Do we have to make them defined?

31

C’est man-tick

« Type mismatches in dupe were undefined
behavior

o Do we have to make them defined?

o What are the pros/cons?

32

Errors Rule

33

Errors Rule

* Let’'s add some, knowing that it's not strictly
necessary

34

Errors Rule

* Let’'s add some, knowing that it's not strictly
necessary

« Our semantics now relate programs to answers
instead of values

35

Errors Rule

* Let’'s add some, knowing that it's not strictly
necessary

« Our semantics now relate programs to answers
instead of values

o answers are either values (as before), or
errors

36

Errors Rule

* Let’'s add some, knowing that it's not strictly
necessary

« Our semantics now relate programs to answers
instead of values

o answers are either values (as before), or
errors

« We'll just show the new rules, none of the others
have changed.

37

C’est man-tick

38

C’est man-tick

« Where can errors occur (currently)?

39

C’est man-tick

« Where can errors occur (currently)?

E[(add1 b), err]

40

C’est man-tick

« Where can errors occur (currently)?

E[(add1 b), err]

E[(sub1 b), err]

41

C’est man-tick

« Where can errors occur (currently)?

E[(add1 b), err]

E[(sub1 b), err]

E[(zero? b), err]

42

C’est man-tick

43

e |s that it?

C’est man-tick

44

e |s that it?

C’est man-tick

(1f (zero? #f) 1 2)

45

C’est man-tick

46

C’est man-tick

« We also need to propagate errors 'upward’

47

C’est man-tick

« We also need to propagate errors 'upward’

Ele, err]

E[(zero? e), err]

48

C’est man-tick

« We also need to propagate errors 'upward’

Ele, err]

E[(zero? e), err]

Ele, err]
E[(add1 e), err]

49

C’est man-tick

« We also need to propagate errors 'upward’

Ele, err]

E[(zero? e), err]

Ele, err]
E[[(addl1 e), err]

Ele, err]
E[(sub1 e), err]

50

C’est man-tick

« We also need to propagate errors 'upward’

Ele, err]

E[(zero? e), err]

Ele, err]
E[[(addl1 e), err]

Ele, err]
E[(sub1 e), err]

Ele, err]
E[(if e ey €;), err]

51

Rules are the easy part

52

Rules are the easy part

« How can our implementations match these rules?

53

Let’s look at the interpreter

We'll do that in the terminal, as it's starting to get a bit too cumbersome

54

Let's experiment

extort> (require "extort interp.rkt")

55

Now the compiler.

56

Now the compiler.

« What needs to change, if anything?

57

Now the compiler.

« What needs to change, if anything?

» What should the error message be?

58

Runtime errors

59

Runtime errors

» Things need to happen in the RTS and compiler.

60

Runtime errors

» Things need to happen in the RTS and compiler.

© Runtime system?

61

Runtime errors

» Things need to happen in the RTS and compiler.
© Runtime system?

o Compiler?

62

Let’s take a look at the RTS and compiler

63

* Is live

Assignment 3

64

Assignment 3

* Is live

« Due next Tuesday.

65

Assignment 3

* Is live
* Due next Tuesday.

o Please tell your fellow students to check the
webpage periodically

o If there are any issues that might make you
unable to do the assignment on time,
talk to me

66

