
CMSC 430, Feb 18th 2020

Extort

1

First things first

2

First things first

• Assignment #2

3

First things first

• Assignment #2

Thanks to those of you that turned it in!

4

First things first

• Assignment #2

Thanks to those of you that turned it in!

Hoping to get grading done by the end of the
week.

5

First things first

• Assignment #2

Thanks to those of you that turned it in!

Hoping to get grading done by the end of the
week.

• Two issues:

6

First things first

• Assignment #2

Thanks to those of you that turned it in!

Hoping to get grading done by the end of the
week.

• Two issues:

One of my TAs is going to disambiguate github
ID <-> UID. If you have concerns about that,
contact me ASAP

7

First things first

• Assignment #2

Thanks to those of you that turned it in!

Hoping to get grading done by the end of the
week.

• Two issues:

One of my TAs is going to disambiguate github
ID <-> UID. If you have concerns about that,
contact me ASAP

Without ELMS/Canvas, how can I best
communicate grades?

8

We’ve been Duped

9

We’ve been Duped

• On Thursday we saw that even though we have
two types and a semantics for our programs,
there’s all sorts of undefined behaviour.

10

We’ve been Duped

• On Thursday we saw that even though we have
two types and a semantics for our programs,
there’s all sorts of undefined behaviour.

• One strange consequence of this was that our
interpreter and compiler behaved differently!

11

We’ve been Duped

• On Thursday we saw that even though we have
two types and a semantics for our programs,
there’s all sorts of undefined behaviour.

• One strange consequence of this was that our
interpreter and compiler behaved differently!

Why?

12

Addressing the error of our ways

13

Addressing the error of our ways

• Recap from last time:

14

Addressing the error of our ways

• Recap from last time:

(add1 #f)

15

Addressing the error of our ways

• Recap from last time:

16

Addressing the error of our ways

• Recap from last time:

(zero? #f)

17

Addressing the error of our ways

• Recap from last time:

18

Addressing the error of our ways

• Recap from last time:

(if (zero? #f) 1 2)

19

Addressing the error of our ways

• Recap from last time:

(if (zero? #f) 1 2)

• Previously, these were undefined

20

Addressing the error of our ways

• Recap from last time:

(if (zero? #f) 1 2)

• Previously, these were undefined

In our interpreter we would get a failure
because of the errors from the underlying
Racket execution

21

Addressing the error of our ways

• Recap from last time:

(if (zero? #f) 1 2)

• Previously, these were undefined

In our interpreter we would get a failure
because of the errors from the underlying
Racket execution

In our compiler we’d get junk

22

Extort

23

Extort

• Our language extort the same as dupe except
we address errors explicitely

24

Extort’s AST

25

Extort’s AST

• No changes:

26

Extort’s AST

• No changes:

e ::= ... | if e e e | zero? e

27

Extort’s AST

• No changes:

e ::= ... | if e e e | zero? e

Why don’t we need to change the AST?

28

C’est man-tick

29

C’est man-tick

• Type mismatches in dupe were undefined
behavior

30

C’est man-tick

• Type mismatches in dupe were undefined
behavior

Do we have to make them defined?

31

C’est man-tick

• Type mismatches in dupe were undefined
behavior

Do we have to make them defined?

What are the pros/cons?

32

Errors Rule

33

Errors Rule

• Let’s add some, knowing that it’s not strictly
necessary

34

Errors Rule

• Let’s add some, knowing that it’s not strictly
necessary

• Our semantics now relate programs to answers
instead of values

35

Errors Rule

• Let’s add some, knowing that it’s not strictly
necessary

• Our semantics now relate programs to answers
instead of values

answers are either values (as before), or
errors

36

Errors Rule

• Let’s add some, knowing that it’s not strictly
necessary

• Our semantics now relate programs to answers
instead of values

answers are either values (as before), or
errors

• We’ll just show the new rules, none of the others
have changed.

37

C’est man-tick

38

C’est man-tick

• Where can errors occur (currently)?

39

C’est man-tick

• Where can errors occur (currently)?

40

C’est man-tick

• Where can errors occur (currently)?

41

C’est man-tick

• Where can errors occur (currently)?

42

C’est man-tick

43

C’est man-tick

• Is that it?

44

C’est man-tick

• Is that it?

(if (zero? #f) 1 2)

45

C’est man-tick

46

C’est man-tick

• We also need to propagate errors ’upward’

47

C’est man-tick

• We also need to propagate errors ’upward’

48

C’est man-tick

• We also need to propagate errors ’upward’

49

C’est man-tick

• We also need to propagate errors ’upward’

50

C’est man-tick

• We also need to propagate errors ’upward’

51

Rules are the easy part

52

Rules are the easy part

• How can our implementations match these rules?

53

Let’s look at the interpreter

We'll do that in the terminal, as it's starting to get a bit too cumbersome

54

Let’s experiment

extort> (require "extort_interp.rkt")

55

Now the compiler.

56

Now the compiler.

• What needs to change, if anything?

57

Now the compiler.

• What needs to change, if anything?

• What should the error message be?

58

Runtime errors

59

Runtime errors

• Things need to happen in the RTS and compiler.

60

Runtime errors

• Things need to happen in the RTS and compiler.

Runtime system?

61

Runtime errors

• Things need to happen in the RTS and compiler.

Runtime system?

Compiler?

62

Let’s take a look at the RTS and compiler

63

Assignment 3

• Is live

64

Assignment 3

• Is live

• Due next Tuesday.

65

Assignment 3

• Is live

• Due next Tuesday.

Please tell your fellow students to check the
webpage periodically

If there are any issues that might make you
unable to do the assignment on time,
talk to me

66

