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Update

• I have credentials!

I got UMD credentials near the end of last
week, and am now jumping through all the
hoops to get your grades on ELMS/Canvas

Hoping to get grading done by the end of the
week.

I’m scraping the plan of having the TA
disambiguate and am going to try and do it
through ELMS. You should already see a quiz
on ELMS?
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Word to the wise

• I’ve been seein some of the assignments that
have been submitted

I am consistently seeing a very serious
mistake!

Unless you defined interp using macros, 
you must quote your input expression!

Why is the following wrong?

(check-equal? (interp (add1 1)) 2)
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Word to the wise

• This is partly my fault (and is why I stopped using
macros in class)

Some of you wrote tests (yay!)

But those tests are just testing racket, not your
interpreter.

This is not a rare mistake. You should _all_
double-check your code.
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Appreciating what we have:

• To recap, we’ve got:

unary arithmetic primitives

Conditionals, for branching

Errors that halt our programs

let-bound variables
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Grift

• What would be useful to add?
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Fraud’s AST

e = i | b | if e e e | let ((id e)) e | id | p e

p = add1 | sub1 | zero?

id = variable
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Grift’s AST

• We go

• to:

e = ... | p1 e | p2 e e

p1 = add1 | sub1 | zero?

p2 = + | -
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Binary Operators!

• Interpretation is easy (as we’ll see)

• Compilation is not hard, but requires a non-trivial
insight (as we’ll see)

• Can anyone think of why interpretation might be
much easier?
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Meanings

• Grift doesn’t add much:

• Then we use that rule
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Interpreter

• Switch to the terminal...
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The Compiler

• We can’t do it naively, consider:

(define (compile-+ e0 e1 c)
  (let ((c0 (compile-e e0 c))

  (c1 (compile-e e1 c)))
  `(,@c0

,@c1
(add rax ???))))
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The Compiler

• What are some alternatives?

• With those alternatives in mind, consider:

(+ (add1 2) (add1 3))

(+ (add1 2) 3)

(+ (add1 2) x)
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add comments
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The Compiler

• Before we dive in, let’s review compiling `let` and
add comments

Reminder to José: in assembly they’re called
`remarks’
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