
CMSC 430, Feb 25th 2020

Grift

1

Update

2

Update

• I have credentials!

3

Update

• I have credentials!

I got UMD credentials near the end of last
week, and am now jumping through all the
hoops to get your grades on ELMS/Canvas

4

Update

• I have credentials!

I got UMD credentials near the end of last
week, and am now jumping through all the
hoops to get your grades on ELMS/Canvas

Hoping to get grading done by the end of the
week.

5

Update

• I have credentials!

I got UMD credentials near the end of last
week, and am now jumping through all the
hoops to get your grades on ELMS/Canvas

Hoping to get grading done by the end of the
week.

I’m scraping the plan of having the TA
disambiguate and am going to try and do it
through ELMS. You should already see a quiz
on ELMS?

6

Word to the wise

7

Word to the wise

• I’ve been seein some of the assignments that
have been submitted

8

Word to the wise

• I’ve been seein some of the assignments that
have been submitted

I am consistently seeing a very serious
mistake!

9

Word to the wise

• I’ve been seein some of the assignments that
have been submitted

I am consistently seeing a very serious
mistake!

Unless you defined interp using macros,
you must quote your input expression!

10

Word to the wise

• I’ve been seein some of the assignments that
have been submitted

I am consistently seeing a very serious
mistake!

Unless you defined interp using macros,
you must quote your input expression!

Why is the following wrong?

11

Word to the wise

• I’ve been seein some of the assignments that
have been submitted

I am consistently seeing a very serious
mistake!

Unless you defined interp using macros,
you must quote your input expression!

Why is the following wrong?

(check-equal? (interp (add1 1)) 2)

12

Word to the wise

13

Word to the wise

• This is partly my fault (and is why I stopped using
macros in class)

14

Word to the wise

• This is partly my fault (and is why I stopped using
macros in class)

Some of you wrote tests (yay!)

15

Word to the wise

• This is partly my fault (and is why I stopped using
macros in class)

Some of you wrote tests (yay!)

But those tests are just testing racket, not your
interpreter.

16

Word to the wise

• This is partly my fault (and is why I stopped using
macros in class)

Some of you wrote tests (yay!)

But those tests are just testing racket, not your
interpreter.

This is not a rare mistake. You should _all_
double-check your code.

17

Appreciating what we have:

18

Appreciating what we have:

• To recap, we’ve got:

19

Appreciating what we have:

• To recap, we’ve got:

unary arithmetic primitives

20

Appreciating what we have:

• To recap, we’ve got:

unary arithmetic primitives

Conditionals, for branching

21

Appreciating what we have:

• To recap, we’ve got:

unary arithmetic primitives

Conditionals, for branching

Errors that halt our programs

22

Appreciating what we have:

• To recap, we’ve got:

unary arithmetic primitives

Conditionals, for branching

Errors that halt our programs

let-bound variables

23

Grift

24

Grift

• What would be useful to add?

25

Fraud’s AST

e = i | b | if e e e | let ((id e)) e | id | p e

26

Fraud’s AST

e = i | b | if e e e | let ((id e)) e | id | p e

p = add1 | sub1 | zero?

27

Fraud’s AST

e = i | b | if e e e | let ((id e)) e | id | p e

p = add1 | sub1 | zero?

id = variable

28

Grift’s AST

• We go

• from:

29

Grift’s AST

• We go

• from:

e = ... | p e

30

Grift’s AST

• We go

• to:

31

Grift’s AST

• We go

• to:

e = ... | p1 e | p2 e e

32

Grift’s AST

• We go

• to:

e = ... | p1 e | p2 e e

p1 = add1 | sub1 | zero?

33

Grift’s AST

• We go

• to:

e = ... | p1 e | p2 e e

p1 = add1 | sub1 | zero?

p2 = + | -

34

Binary Operators!

35

Binary Operators!

• Interpretation is easy (as we’ll see)

36

Binary Operators!

• Interpretation is easy (as we’ll see)

• Compilation is not hard, but requires a non-trivial
insight (as we’ll see)

37

Binary Operators!

• Interpretation is easy (as we’ll see)

• Compilation is not hard, but requires a non-trivial
insight (as we’ll see)

• Can anyone think of why interpretation might be
much easier?

38

Meanings

39

Meanings

• Grift doesn’t add much:

40

Meanings

• Grift doesn’t add much:

• First we factor out a rule for primitives

41

Meanings

• Grift doesn’t add much:

• Then we use that rule

42

Interpreter

43

Interpreter

• Switch to the terminal...

44

The Compiler

45

The Compiler

• We can’t do it naively, consider:

46

The Compiler

• We can’t do it naively, consider:

(define (compile-+ e0 e1 c)
 (let ((c0 (compile-e e0 c))

 (c1 (compile-e e1 c)))
 `(,@c0

,@c1
(add rax ???))))

47

The Compiler

48

The Compiler

• What are some alternatives?

49

The Compiler

• What are some alternatives?

• With those alternatives in mind, consider:

50

The Compiler

• What are some alternatives?

• With those alternatives in mind, consider:

(+ (add1 2) (add1 3))

51

The Compiler

• What are some alternatives?

• With those alternatives in mind, consider:

(+ (add1 2) (add1 3))

(+ (add1 2) 3)

52

The Compiler

• What are some alternatives?

• With those alternatives in mind, consider:

(+ (add1 2) (add1 3))

(+ (add1 2) 3)

(+ (add1 2) x)

53

The Compiler

54

The Compiler

• Before we dive in, let’s review compiling `let` and
add comments

55

The Compiler

• Before we dive in, let’s review compiling `let` and
add comments

Reminder to José: in assembly they’re called
`remarks’

56

