
CMSC 430, Feb 27th 2020

Grift 2: Grift Harder

1



Thoughts about Assignment 3

2



Thoughts about Assignment 3

• I noticed a few trends in how people we working

3



Thoughts about Assignment 3

• I noticed a few trends in how people we working

I’d like to address some of those trends

4



Thoughts about Assignment 3

• I noticed a few trends in how people we working

I’d like to address some of those trends

We’ll do that in a moment...

5



Thoughts about Assignment 3

• I noticed a few trends in how people we working

I’d like to address some of those trends

We’ll do that in a moment...

• The assignments are difficult

6



Thoughts about Assignment 3

• I noticed a few trends in how people we working

I’d like to address some of those trends

We’ll do that in a moment...

• The assignments are difficult

Yet only three people came to my office hours
last week

7



Thoughts about Assignment 3

• I noticed a few trends in how people we working

I’d like to address some of those trends

We’ll do that in a moment...

• The assignments are difficult

Yet only three people came to my office hours
last week

I am not on campus most days and I am very
difficult to reach on weekends

8



Thoughts about Assignment 3

• I noticed a few trends in how people we working

I’d like to address some of those trends

We’ll do that in a moment...

• The assignments are difficult

Yet only three people came to my office hours
last week

I am not on campus most days and I am very
difficult to reach on weekends

I try to respond to emails, but there can be a
lag

9



Thoughts about Assignment 3

• I noticed a few trends in how people we working

I’d like to address some of those trends

We’ll do that in a moment...

• The assignments are difficult

Yet only three people came to my office hours
last week

I am not on campus most days and I am very
difficult to reach on weekends

I try to respond to emails, but there can be a
lag

If you have a timely need office hours (mine of
a TA’s) are your best bet

10



Cheating

• Don’t

11



Trend #1

12



Trend #1

• Know your operating system and relevant tools

13



Trend #1

• Know your operating system and relevant tools

• You should be able to do the following:

14



Trend #1

• Know your operating system and relevant tools

• You should be able to do the following:

Install software

15



Trend #1

• Know your operating system and relevant tools

• You should be able to do the following:

Install software

Run tools (like Dr. Racket or some git GUI)

16



Trend #1

• Know your operating system and relevant tools

• You should be able to do the following:

Install software

Run tools (like Dr. Racket or some git GUI)

Use CLI tools if necessary (like the Racket
repl, or git

17



Trend #2

18



Trend #2

• Many of you that needed help had a very
common issue:

19



Trend #2

• Many of you that needed help had a very
common issue:

You knew what needed doing but you’d trip
yourself up

20



Trend #2

• Many of you that needed help had a very
common issue:

You knew what needed doing but you’d trip
yourself up

Structure, structure, structure

21



Trend #2

• Many of you that needed help had a very
common issue:

You knew what needed doing but you’d trip
yourself up

Structure, structure, structure

Languages provide abstractions for a reason:
use them

22



Functions

23



Functions

• Structure of your code ←→ structure of your
problem

24



Functions

• Structure of your code ←→ structure of your
problem

• Decompose the problem into smaller bits:

25



Functions

• Structure of your code ←→ structure of your
problem

• Decompose the problem into smaller bits:

This helps you think

26



Functions

• Structure of your code ←→ structure of your
problem

• Decompose the problem into smaller bits:

This helps you think

This helps you test

27



Functions

• Structure of your code ←→ structure of your
problem

• Decompose the problem into smaller bits:

This helps you think

This helps you test

• Some of you would misidentify the errors because
you assumed too much!

28



Functions

• Structure of your code ←→ structure of your
problem

• Decompose the problem into smaller bits:

This helps you think

This helps you test

• Some of you would misidentify the errors because
you assumed too much!

smaller functions ⇒ fewer assumptions

29



Functions

• Structure of your code ←→ structure of your
problem

• Decompose the problem into smaller bits:

This helps you think

This helps you test

• Some of you would misidentify the errors because
you assumed too much!

smaller functions ⇒ fewer assumptions

• Let me show you an example.

30



Trend #3

31



Trend #3

• Asking good questions

32



Trend #3

• Asking good questions

• Screenshots are an innapropriate way to ask for
help.

33



Trend #3

• Asking good questions

• Screenshots are an innapropriate way to ask for
help.

I do not have a language implementation in my
head (I wish I did)

34



Trend #3

• Asking good questions

• Screenshots are an innapropriate way to ask for
help.

I do not have a language implementation in my
head (I wish I did)

When you share code, the very first thing I do
it try to run it!

35



Trend #3

• Asking good questions

• Screenshots are an innapropriate way to ask for
help.

I do not have a language implementation in my
head (I wish I did)

When you share code, the very first thing I do
it try to run it!

• Reporting an compiler/runtime/interpreter error
without context make it difficult for anyone to tell
you anything new

36



Trend #3

• Asking good questions

• Screenshots are an innapropriate way to ask for
help.

I do not have a language implementation in my
head (I wish I did)

When you share code, the very first thing I do
it try to run it!

• Reporting an compiler/runtime/interpreter error
without context make it difficult for anyone to tell
you anything new

If you aren’t clear about what you’ve
already tried it will be difficult to know how to
help

37



Some thoughts on git

• It’s a powerful tool

38



Moving on

39



Stacks!

40



Stacks!

• We’ve already agreed that stacks are useful for
managing runtime environments

41



Stacks!

• We’ve already agreed that stacks are useful for
managing runtime environments

• For our compiled code, let’s use the rsp register
to point to the base of our stack

42



Stacks!

• We’ve already agreed that stacks are useful for
managing runtime environments

• For our compiled code, let’s use the rsp register
to point to the base of our stack

• Consider the following

43



Stacks!

• We’ve already agreed that stacks are useful for
managing runtime environments

• For our compiled code, let’s use the rsp register
to point to the base of our stack

• Consider the following

(let ((x 1)) (let ((y (add1 x))) y))

44



Stacks!

• We’ve already agreed that stacks are useful for
managing runtime environments

• For our compiled code, let’s use the rsp register
to point to the base of our stack

• Consider the following

(let ((x 1)) (let ((y (add1 x))) y))

• Let’s walk through what’s happening to the stack
in our compiled code

45



Stacks?

46



Stacks?

• Let’s look at a binary operator

47



Stacks?

• Let’s look at a binary operator

(let ((y 5)) (+ y (add1 y)))

48



Stacks?

• Let’s look at a binary operator

(let ((y 5)) (+ y (add1 y)))

• How do we manage the two arguments to +?

49



The Compiler

50



The Compiler

• We can’t do it naively, consider:

51



The Compiler

• We can’t do it naively, consider:

(define (compile-+ e0 e1 c)
  (let ((c0 (compile-e e0 c))

  (c1 (compile-e e1 c)))
  `(,@c0

,@c1
(add rax ???))))

52



The Compiler

53



The Compiler

• What are some alternatives?

54



The Compiler

• What are some alternatives?

• With those alternatives in mind, consider:

55



The Compiler

• What are some alternatives?

• With those alternatives in mind, consider:

(+ (add1 2) (add1 3))

56



The Compiler

• What are some alternatives?

• With those alternatives in mind, consider:

(+ (add1 2) (add1 3))

(+ (add1 2) 3)

57



The Compiler

• What are some alternatives?

• With those alternatives in mind, consider:

(+ (add1 2) (add1 3))

(+ (add1 2) 3)

(+ (add1 2) x)

58



The Compiler

59



The Compiler

• Before we dive in, let’s add comments

60



The Compiler

• Before we dive in, let’s add comments

You should all feel empowered to experiment

61



The Compiler

• Before we dive in, let’s add comments

You should all feel empowered to experiment

Reminder to José: in assembly they’re called
`remarks’

62


