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Stacks

• Let’s review stacks a little bit

• One thing I was trying to get across, but may have
failed:

There are many ways to use stacks to store
temporaries!

Only thing that matters: that it works.
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Stacks: Part 1

• In AMD64, there are two registers normally used
for the stack:

rsp and rbp

• Importantly, these registers are not special!

In fact, in the architecture specification they
are explicitely called out as general purpose
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Stacks: Part 2

• The idea behind having two:

The stack pointer points to the "top" of the
stack

The base pointer points to the "bottom" of the
stack

• The ’distance’ between the determines how many
things are currently on the stack.
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Stacks: Part 3

• Let’s take a look:

• Even with both rsp and rbp we have to keep
track of things
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Stacks: Part 6

• We went with the last one:

• Why not use rbp?

Because rbp is special to C

:(
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Our languages so far:

• Each lecture we’re seeing the complexities of our
language grow

• Most of the time these new features change
things in our interpreter/compiler but not in our
RTS

• Today is an RTS day.

Which is also a compiler day, to take
advantage of our new RTS!
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• Hustle is going to introduce a notion of a heap to
our RTS
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What’s in the box?

• A good short-hand:

Box = not on the stack

• In general, boxed values are things you need to
derefence a pointer to get.

• But not all things that you need to dereference a
pointer are ’boxed’
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Boxing Day

racket> ; show box and unbox
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What’s in the box?

• Boxes, without a notion of pointer equality, are
uninteresting.

• In our language, boxes are single-element vectors

• For now, we can see boxes as an important
stepping stone to something much more
important:

cons

52



Getting Box/Car on track

53



Getting Box/Car on track

• Goal for today:

54



Getting Box/Car on track

• Goal for today:

• Understand how things like box and cons are
implemented
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Hustle’s AST

• We’re only showing the new stuff:

e = ...

• Expressions are unchanged!

p1 = ... | box | unbox | car | cdr

p2 = ... | cons

• Is this enough?

Not if we want programs to have boxed
results.

v = ... | (box v) | (cons v v) | ’()
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Find value in the hustle

• We’ve got 3 new values, what do we do about
representation?

• Before: All values were ’flat’

• Now: values can be arbitrarily big

So they won’t all fit in a machine word!

• Idea:

Make distinction between flat and boxed
values

Then make distinctions between the flat
(immediate) and boxed values
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Wait a bit... what about the heap?

• Early I had mentioned that we’ll get a heap, then I
never addressed it

• I didn’t forget, we just had to lay the groundwork

• For now, it’s easy:

Just have the RTS allocate a big block of
memory. That’s it. That’s the heap.

• We gotta keep track of it too...

Uhh... let’s use rdi

• Moving on.
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From grifters to hustlers

• Before we had the following:

(define imm-shift        1)
(define imm-type-mask    (sub1 (shift 1 imm-shift)))
(define imm-type-int     0)
(define imm-val-true     3)
(define imm-val-false    1)
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From grifters to hustlers

• Which becomes:

(define result-shift     3)
(define result-type-mask (sub1 (shift 1 result-shift)
(define type-imm         0)
(define type-box         1)
(define type-pair        2)
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We need more

• However, this only helps us determine the types

• We need more in order to disambiguate the
values
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All the bits

(define result-shift     3)
(define result-type-mask (sub1 (shift 1 result-shift)
(define type-imm         0)
(define type-box         1)
(define type-pair        2)
(define imm-shift        (+ 3 result-shift))
(define imm-type-mask    (sub1 (shift 1 imm-shift)))
(define imm-type-int     (shift 0 result-shift))
(define imm-val-true    (shift 1 result-shift))
(define imm-val-false   (shift 2 result-shift))
(define imm-val-empty   (shift 3 result-shift))
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Follow these instructions

• Here is a quick overview of some useful facts

• rdi

MOV RAX, [RDI]

MOV RAX, [RDI + 8]

MOV [RDI + 8], RAX
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Follow these instructions

• Here is a quick overview of some useful facts

• rdi

MOV RAX, [RDI]

MOV RAX, [RDI + 8]

MOV [RDI + 8], RAX

• we call this offset
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Follow these instructions

• Here is a quick overview of some useful facts

• someone asked about how many ’lets’ we can
have:

• run the following at your terminal

ulimit -a

• If I did my math right (always questionable), we
should be able to store ~1 million let-bound
variables.
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Let’s write it!
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