
CMSC451 (Kruskal) Homework 4 Due: Monday, May 4, 2020

Problem 1. Use the dynamic programming algorithm to find by hand an optimal parenthesization
for multiplying matrices of dimensions are given by the sequence

< 6, 3, 10, 5, 8, 4, 20 > ,

so that the matrix dimensions are

6 × 3, 3 × 10, 10 × 5, 5 × 8, 8 × 4, 4 × 20 > .

Show the table. You may use a calculater.

Problem 2. In the traditional world chess championship, which changed format after Bobby Fischer
became world champion, a match is 24 games. The current champion retains the title in case
of a tie. Not only are there wins and losses, but some games end in a draw (tie). Wins count as
1, losses as 0, and draws as 1/2. The players take turns playing white and black. White moves
first, which is an advantage. Assume the champion is white in the first game, has probabilities
ww, wd, and wl of winning, drawing, and losing playing white, and has probabilities bw, bd,
and bl of winning, drawing, and losing playing black.

(a) Write down a recurrence for the chance that the champion retains the title. Assume that there
are g games left to play in the match and that the champion needs to win i games (where i is
either an integer or an integer plus 1/2).

(b) Write a recursive algorithm to compute the chance that the champion retains the title, using
the above recurrence.

(c) Produce a memoized version of your algorithm.

(d) Give a bottom-up dynamic programming algorithm to compute the chance that the champion
retains the title.

(e) Analyze the running time of your dynamic programming algorithm.

Problem 3. In the Euclidean Traveling-Salesman Tour the cities are points in the Euclean plane
and distances are measured in the standard way. The problem is NP-complete. A Bitonic
Euclidean Traveling-Salesman Tour starts at the leftmost city, visits cities from left-to-right
until it gets to the rightmost city, and then visits cities from right-to-left until it gets back to
the leftmost city. (Of course, each city is visited only once, either going left-to-right or right-
to-left.) Use dynamic programming to find an optimal bitonic tour in time θ(n2). Make sure to
state your recurrence. HINT: Scan left-to-right keeping track of the optimal left-to-right tour
and the optimal right-to-left tour at the same time.


