
CMSC 754: Spring 2020 Dave Mount

CMSC 754: Short Reference Guide

This document contains a short summary of information about algorithm analysis and data structures,
which may be useful later in the semester.

Asymptotic Forms: The following gives both the formal “c and n0” definitions and an equivalent limit
definition for the standard asymptotic forms. Assume that f and g are nonnegative functions.

Asymptotic Form Relationship Limit Form Formal Definition

f(n) ∈ Θ(g(n)) f(n) ≡ g(n) 0 < lim
n→∞

f(n)

g(n)
< ∞ ∃c1, c2, n0, ∀n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n).

f(n) ∈ O(g(n)) f(n) � g(n) lim
n→∞

f(n)

g(n)
< ∞ ∃c, n0, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ Ω(g(n)) f(n) � g(n) lim
n→∞

f(n)

g(n)
> 0 ∃c, n0, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

f(n) ∈ o(g(n)) f(n) ≺ g(n) lim
n→∞

f(n)

g(n)
= 0 ∀c, ∃n0, ∀n ≥ n0, 0 ≤ f(n) ≤ cg(n).

f(n) ∈ ω(g(n)) f(n) ≻ g(n) lim
n→∞

f(n)

g(n)
= ∞ ∀c, ∃n0, ∀n ≥ n0, 0 ≤ cg(n) ≤ f(n).

Polylog-Polynomial-Exponential: For any constants a, b, and c, where b > 0 and c > 1.

loga n ≺ nb ≺ cn.

Common Summations: Let c be any constant, c 6= 1, and n ≥ 0.

Name of Series Formula Closed-Form Solution Asymptotic

Constant Series
∑

b

i=a
1 = max(b− a+ 1, 0) Θ(b− a)

Arithmetic Series
∑

n

i=0 i = 0 + 1 + 2 + · · ·+ n =
n(n+ 1)

2
Θ(n2)

Geometric Series
∑

n

i=0 c
i = 1 + c+ c2 + · · ·+ cn =

cn+1
− 1

c− 1

{

Θ(cn) (c > 1)
Θ(1) (c < 1)

Quadratic Series
∑

n

i=0 i
2 = 12 + 22 + · · ·+ n2 =

2n3 + 3n2 + n

6
Θ(n3)

Linear-geom. Series
∑

n−1
i=0 ici = c+ 2c2 + 3c3 · · ·+ ncn =

(n− 1)c(n+1)
− ncn + c

(c− 1)2
Θ(ncn)

Harmonic Series

n
∑

i=1

1

i
= 1 +

1

2
+

1

3
+ · · ·+

1

n
≈ lnn Θ(log n)

Recurrences: Recursive algorithms (especially those based on divide-and-conquer) can often be analyzed
using the so-called Master Theorem, which states that given constants a > 0, b > 1, and d ≥ 0, the
function T (n) = aT (n/b) +O(nd), has the following asymptotic form:

T (n) =

O(nd) if d > logb a
O(nd log n) if d = logb a
O(nlog

b
a) if d < logb a.

Sorting: The following algorithms sort a set of n keys over a totally ordered domain. Let [m] denote the
set {0, . . . ,m}, and let [m]k denote the set of ordered k-tuples, where each element is taken from [m].

A sorting algorithm is stable if it preserves the relative order of equal elements. A sorting algorithm is
in-place if it uses no additional array storage other than the input array (although O(log n) additional
space is allowed for the recursion stack). The comparison-based algorithms (Insertion-, Merge-, Heap-,
and QuickSort) operate under the general assumption that there is a comparator function f(x, y) that
takes two elements x and y and determines whether x < y, x = y, or x > y.

Algorithm Domain Time Space Stable In-place

CountingSort Integers [m] O(n+m) O(n+m) Yes No
RadixSort Integers [m]k

or [mk]
O(k(n+m)) O(kn+m) Yes No

InsertionSort Total order O(n2) O(n) Yes Yes
MergeSort

Total order O(n log n) O(n)
Yes No

HeapSort No Yes
QuickSort Yes/No∗ No/Yes

∗There are two versions of QuickSort, one which is stable but not in-place, and one which is in-place
but not stable.

Order statistics: For any k, 1 ≤ k ≤ n, the kth smallest element of a set of size n (over a totally ordered
domain) can be computed in O(n) time.

Useful Data Structures: All these data structures use O(n) space to store n objects.

Unordered Dictionary: (by randomized hashing) Insert, delete, and find in O(1) expected time
each. (Note that you can find an element exactly, but you cannot quickly find its predecessor or
successor.)

Ordered Dictionary: (by balanced binary trees or skiplists) Insert, delete, find, predecessor, succes-
sor, merge, split in O(log n) time each. (Merge means combining the contents of two dictionaries,
where the elements of one dictionary are all smaller than the elements of the other. Split means
splitting a dictionary into two about a given value x, where one dictionary contains all the items
less than or equal to x and the other contains the items greater than x.) Given the location of an
item x in the data structure, it is possible to locate a given element y in time O(log k), where k
is the number of elements between x and y (inclusive).

Priority Queues: (by binary heaps) Insert, delete, extract-min, union, decrease-key, increase-key in
O(log n) time. Find-min in O(1) time each. Make-heap from n keys in O(n) time.

Priority Queues: (by Fibonacci heaps) Any sequence of n insert, extract-min, union, decrease-key
can be done in O(1) amortized time each. (That is, the sequence takes O(n) total time.) Extract-
min and delete take O(log n) amortized time. Make-heap from n keys in O(n) time.

Disjoint Set Union-Find: (by inverted trees with path compression) Union of two disjoint sets and
find the set containing an element in O(log n) time each. A sequence of m operations can be done
in O(α(m,n)) amortized time. That is, the entire sequence can be done in O(m · α(m,n)) time.
(α is the extremely slow growing inverse-Ackerman function.)

Orientation Testing: For any constant dimension d, given any ordered (d+1)-tuple of points in R
d, it can

be determined in O(1) time whether these points are (a) negatively oriented (clockwise), (b) positively
oriented (counterclockwise) or (c) affinely dependent (collinear). This test can be applied for many
other geometric predicates, such as determining whether two given line segments in the plane intersect,
whether a given point lies within a given triangle, and whether a given point lies within the circumcircle
of three other given points. (This will be discussed later in the semester.)

CMSC 754: Spring 2020 Dave Mount

Homework 1: Convexity and Hulls

Handed out Tuesday, Feb 11. Due at the start of class on Tuesday, Feb 18. Late homeworks are not accepted
(unless an extension has been prearranged) so please turn in whatever you have completed by the due date.
Unless otherwise specified, you may assume that all inputs are given in general position.

Problem 1. In this problem, we will consider a few applications of orientation testing. In each case, express
the answer in terms of orientation tests in 2- or 3-dimensions.

(a) You are given four points a, b, c, and d in R
2. Determine whether the line segments ab and

cd intersect (see Fig. 1(a)). (You do not need to compute the intersection point itself. If they
intersect, you may assume that they intersect in a single point in their interiors.)

pj

q1
q0

a

c
b

d

a

b

c

p

q

(a) (b) (c)

Figure 1: Orientation testing.

(b) You are given a set of points P = {p1, . . . , pn} in R
2 and two additional points q0 and q1. Among

the points of P that lie strictly to the left of the directed line −−→q0q1, compute the point pj that
minimizes the counterclockwise angle between the rays −−→q0q1 and −−→q1pj (see Fig. 1(b)). If no point
of P lies to the left of −−→q0q1, your algorithm should report this. Your solution should employ O(n)
orientation tests. (Note: The notion of being “left” of a directed line means on the left side of
the line with respect to an observer facing the line’s direction.)

(c) You are given five points a, b, c, p and q in R
3. Determine whether the line segment pq intersects

the triangle △abc (see Fig. 1(c)). (You may assume that p and q do not lie in the plane spanned
by △abc and that if there is an intersection, it occurs in the interior of the triangle.)

Problem 2. Consider a convex polygon P presented as a counterclockwise sequence of vertices 〈p1, . . . , pn〉,
and let q be a point that is external to P (see Fig. 2). Present an O(log n)-time algorithm that computes
a vertex pj that defines a support line passing through q so that P lies to the left of the directed line
−→qpj . For full credit, your algorithm should access points only through orientation tests.

Hint: Indexing and bisecting circular arrays can be a bit messy given issues with wrapping around.
Given two vertices pi and pk, let ccw(i, k) denote the subsequence of vertices along the boundary of
P between pi and pk in counterclockwise order. You may assume that you have access to a function
bisect(i, k) which in O(1) time returns an index m that splits this vertex chain into two subsequences
ccw(i,m) and ccw(m, k) each having roughly an equal number of vertices.

Problem 3. The objective of this problem is to explore possible variations in the guessing sequence for
Chan’s convex hull algorithm for an n-element point set P . Let h denote the size of the final convex
hull. Recall that ConditionalHull(P, h∗) returns the convex hull of P if h∗ ≥ h and “fail” otherwise,
and the algorithm iteratively guesses values of h∗ through repeated squaring. Here is a equivalent
version of the one given in class.

1

p1

p2

p3

pn

pj

q

Figure 2: Orientation testing.

(1) i← 1; status← fail

(2) while (status == fail)

(a) h∗ ← min(22
i

, n)

(b) status← ConditionalHull(P, h∗)

(c) i← i+ 1

(3) return status

What if we do not use repeated squaring? In each of the following cases, indicate what the running
time of Chan’s algorithm would be had we replaced the expression in line (2a). (Express your answer
using O-notation as a function of n and h.) In each case, explain how you derived your answer.

(a) h∗ ← min(i2, n) (quadratic progression)

(b) h∗ ← min(2i, n) (repeated doubling)

(c) h∗ ← min(
√
2
√
2
i

, n)

You may assume any standard results on summations, e.g., the Wikipedia page on summations.

Problem 4. A polygonal chain in the plane is a sequence of vertices C = 〈p1, . . . , pn〉, where each consecutive
pair (pi, pi+1) is connected by a line segment, called an edge. Such a chain is said to be strictly

horizontally monotone if any vertical line intersects the chain in a single point. A collection of chains
is said to be independent if no two intersect each other (see Fig. 3).

Figure 3: A set of independent monotone polygonal chains.

Present an algorithm which, given a set of k strictly monotone polygonal chains C = {C1, . . . , Ck},
determines whether they are independent. Your algorithm does not need to report the intersections,
it just needs indicate whether any intersection exists. Let ni denote the number of vertices in the
ith chain, and let n =

∑k

i=1
ni be the total size of all the chains. Your algorithm should run in time

O(n log k). (Hint: Use plane sweep, but do it efficiently.)

Challenge Problem. (Challenge problems count for extra credit points. These additional points are fac-
tored in only after the final cutoffs have been set, and can only increase your final grade.)

Given a set P = {p1, . . . , pn} of n points in the plane, the minimum horizontal trapezoid is a trapezoid
of minimum area that contains P such that two of its sides are horizontal (see Fig. 4(b)). If there are
multiple trapezoids of the same area, any one of them may be chosen.

2

http://en.wikipedia.org/wiki/Summation

P

(a) (b) (c)

P

Figure 4: Challenge Problem: Minimum horizontal trapezoid

(a) Clearly, the horizontal sides of the trapezoid pass through topmost and bottommost points of P .
What properties should the left and right sides have to yield the minimum area?

(b) Based on your answer to (a), present an O(n log n) time algorithm for computing the minimum
horizontal trapezoid of P .

(c) Suppose that P is given as a convex polygon with n vertices (see Fig. 4(c)). Explain how to
compute the minimum horizontal trapezoid in O(log n) time.

Some tips about writing algorithms: Throughout the semester, whenever you are asked to present an
“algorithm,” you should present three things: the algorithm, an informal proof of its correctness, and a
derivation of its running time. Remember that your description is intended to be read by a human, not a
compiler, so conciseness and clarity are preferred over technical details. Unless otherwise stated, you may
use any results from class, or results from any standard textbook on algorithms and data structures. Also,
you may use results from geometry that: (1) have been mentioned in class, (2) would be known to someone
who knows basic geometry or linear algebra, or (3) is intuitively obvious. If you are unsure, please feel free
to check with me.

Giving careful and rigorous proofs can be quite cumbersome in geometry, and so you are encouraged to
use intuition and give illustrations whenever appropriate. Beware, however, that a poorly drawn figure can
make certain erroneous hypotheses appear to be “obviously correct.”

Throughout the semester, unless otherwise stated, you may assume that input objects are in general

position. For example, you may assume that no two points have the same x-coordinate, no three points are
collinear, no four points are cocircular. Also, unless otherwise stated, you may assume that any geometric
primitive involving a constant number of objects each of constant complexity can be computed in O(1) time.

3

CMSC 754: Spring 2020 Dave Mount

Homework 2: Plane Sweep and Linear Programming

Handed out Thursday, Feb 27. Due at the start of class on Tuesday, Mar 10. Late homeworks are not
accepted (unless an extension has been prearranged) so please turn in whatever you have completed by the
due date. Unless otherwise specified, you may assume that all inputs are given in general position. Also,
when asked to give an algorithm with running time O(f(n)), it is allowed to give a randomized algorithm
with expected running time O(f(n)).

Problem 1. You are given an axis-parallel rectangle R and a collection of closed circular disks D =
{d1, . . . , dn}. Assume that each disk di is represented by its center point pi, which lies within R,
and its (positive real) radius ri. Note that the disks may extend outside of R, and one disk may be
contained within another.

(a) The elements of D are said to form a packing of R if every point of R lies within at most one disk
of D (see Fig. 1(a)). Present a plane-sweep algorithm that determines whether D is a packing of
R. Hint: O(n log n) time is possible.

Not covered

(a) (b)

Figure 1: Problem 1: Packing and covering a rectangle

(b) The elements of D are said to form a cover of R if every point of R lies within at least one disk
of D. (The disks of Fig. 1(b) fail to be a cover because of the small gap shown in the figure.)
Present a plane-sweep algorithm that determines whether D is a cover of R.

Hint: O((n + m) log n) time is possible, where m is the number of intersection points lying
within R between the boundaries of disks. The running time should not depend on the number
of intersection points that lie outside of R.

In both cases, you may assume access to primitive operations on circles and disks (e.g., computing the
intersection points of two circles or the containment of one disk within another). As always, briefly
justify your algorithms’ correctness and derive their running times.

Note on terminology: By the term circle, we mean the set of points of R2 that are equidistant from
a center point. The associated closed disk is the set of points that lie at or within this distance, and
the associated open disk is the set of points that lie strictly closer to the center. Given a center point
p ∈ R

2 and radius r ≥ 0, we can define the circle, closed disk, and open disk as the set of points q ∈ R
2

such that ‖q − p‖ = r, ‖q − p‖ ≤ r and ‖q − p‖ < r, respectively, where ‖q − p‖ denotes the Euclidean
distance between q and p.

Problem 2. Explain how to solve each of the following problems in linear (expected) time. Each can
be modeled as a linear programming (LP) problem, perhaps with some additional pre- and/or post-
processing. In each case, explain how the problem is converted into an LP instance and how the answer
to the LP instance is used/interpreted to solve the stated problem.

1

(a) You are given two point sets P = {p1, . . . , pn} and Q = {q1, . . . , qm} in the plane. Let pi =
(pi,x, pi,y) and qi = (qi,x, qi,y). You are told that these two sets are separated by a vertical line
x = x0, with P to the left and Q to the right (see Fig. 2(a)). Show how to efficiently compute the
line equations (in the form y = ax+ b) for each of the following “tangent lines” (that is, support
lines) of both conv(P) and conv(Q).

(i) ℓ1: Lies above both P and Q

(ii) ℓ2: Lies below both P and Q

(iii) ℓ3: Lies above P and below Q

(iv) ℓ4: Lies below P and above Q

x = x0

P Q

(a) (b) (c)

ℓ1

ℓ2

ℓ3

ℓ4

R

Q

P

h−

h+

x0

Figure 2: Problem 2: LP applications

Note that the convex hull is not given, just the points. In each case, your algorithm should run
in time O(n+m). (Briefly justify correctness and explain the running time in each case.)

(b) The following problem is related to the convex of support vector machines from machine learning.
We are working in R

d (where d is a constant), where each point x is represented by a coordinate
vector (x0, . . . , xd−1). For the sake of illustration, let’s think of the x0 axis as pointing “upwards”.
Any nonvertical hyperplane can be expressed as d-vector of real coefficient a = (a0, . . . , ad−1), by
the equation x0 = a0 +

∑
i=1

d− 1aixi.

You are given two sets of points P = {p1, . . . , pn} and Q = {q1, . . . , qm} in R
d. Explain how to

compute the equations of two parallel hyperplanes:

h+ : x0 = a+0 +

d−1∑

i=1

aixi and h− : x0 = a−0 +

d−1∑

i=1

aixi,

such that every point of P lies on or above h− and every point of Q lies on or below h+ (see
Fig. 2(b)).

The signed vertical distance between h+ and h− is the vertical distance between these hyperplanes
if h+ lies above h− and the negation of this distance otherwise. Your hyperplanes should be chosen
to minimize the signed vertical distance between them. (Thus, if h+ lies below h−, you want to
maximize the distance between them.)

Your algorithm should run in time O(n + m). (Briefly justify your algorithm’s correctness and
explain its running time.)

(c) You are given a set of n halfplanes H = {h1, . . . , hn} in the plane. For concreteness, let us assume
that each halfplane hi is given by the inequality aix + biy ≤ 1, for some real coefficients (ai, bi).
Show how to compute the axis-parallel rectangle R of maximum perimeter that lies within the
intersection of these halfplanes. (You may assume that R is given by the x- and y-coordinates of
its left, right, top, and bottom sides.)

Your algorithm should run in time O(n). (Briefly justify your algorithm’s correctness and explain
its running time.)

2

Problem 3. The purpose of this problem is to get practice with designing and analyzing randomized incre-
mental algorithms. You are to devise a randomized algorithm for computing the upper hull of a set of
points P in the plane. The approach is as follows:

(1) Deterministically, compute the leftmost and rightmost points, denoted v1 and vn, respectively.
The initial upper hull is the segment v1, vn.

(2) Randomly permute the remaining points, which we denote as 〈p2, p3, . . . , pn−1〉.

(3) For i running from 2 to n− 1, add point pi to the hull as follows (see Fig. 3(a)):

(a) Determine the edge vjvj+1 of the hull lying above or below pi (see Fig. 3(b)).

(b) If pi lies below this edge, then ignore it.

(c) Otherwise, walk outwards to the left and right of vjvj+1 to compute points of tangency with
respect to pi, and delete any vertices that lie beneath these tangent lines. Add pi to the hull.

insert

rebucket

vn

v1

pi

vj

vj+1

(a) (b) (c)

Figure 3: Incremental construction of the upper hull.

How do we determine the edge lying immediately above or below pi? We maintain a collection of
buckets, one per edge of the hull, where each contains all the points that lie vertically above or below
this edge. Whenever a new point is added to the hull, the points lying within the bucket of a deleted
edge need to be “rebucketed”. We assume that the points within each bucket are sorted by their
x-coordinates. We merge the points from the deleted buckets (in time proportional to the number of
points) and then walk through this sorted list and assign these points to their new buckets.

(a) Show that (ignoring the time for rebucketing) the above algorithm runs in O(n) time.

(b) Show that, assuming that points are inserted in random order, the expected number of times any
point is rebucketed is O(log n). In particular, show that for any point p, the probability that p is
rebucketed during the ith insertion is at most c/i, where c is a constant. What is the value of c?

It is interesting to note that, unlike the other convex hull algorithms we have seen so far, this one
generalizes to arbitrary dimensions.

Problem 4. In this question, we will explore an alternate way in which to define point-line duality in the
plane. (This generalizes to any dimension, but the plane is the simplest case to work with.) Any line ℓ
in the x, y-plane that does not pass through the origin can be expressed by the equation ℓ : ax+by = 1.
Let us define the polar dual of ℓ, denoted ℓ∗ to be the point (a, b). Similarly, given a point p = (a, b),
define its dual to be the line p∗ : ax + by = 1. Clearly, this mapping is self-inverse, since p∗∗ = p and
ℓ∗∗ = ℓ.

3

(a) Given a line ℓ : ax+ by = 1, define its (open) inner halfplane, denoted ℓ<, to be set of points that
lie on the same side of ℓ as the origin, that is (x, y) ∈ ℓ< if ax+ by < 1 (see Fig. 4(a)). Define ℓ>
analogously for points on the opposite side of ℓ, and define ℓ≤ and ℓ≥ analogously for the closed
halfplanes. We say that point p is inside (resp., outside) ℓ if p ∈ ℓ< (resp. ℓ>).

Prove that polar duality is “order reversing” by showing that point p lies inside/on/outside of ℓ
if and only if ℓ∗ lies inside/on/outside of p∗, respectively (see Fig. 4(b)).

ℓ : ax + by = 1

ℓ< ℓ>

ℓ∗

p

p∗ p∗>
p∗<

(a) (b) (c)

K

ℓi

Figure 4: Polar dual.

(b) Prove that polar duality is “incidence preserving” by showing that ℓ1 and ℓ2 intersect at point p
if and only if the dual line p∗ passes through dual points ℓ∗1 and ℓ∗2.

(c) Let L = {ℓ1, . . . , ℓn} be a set of lines in R
2 and let K be the intersection of the associated (closed)

inner halfplanes, that is, K =
⋂n

i=1
ℓ≤ (see Fig. 4(c). Let’s assume that K is not empty (which

implies that it contains the origin).

Describe the relationship between K and the convex hull of the polar dual set of points L∗ =
{ℓ∗1, . . . , ℓ

∗
n}? In particular, explain how the CCW order of edges around the boundary of K

relates to the order of points around conv(L∗). Justify your answer.

Challenge Problem. (Challenge problems count for extra credit points. These additional points are fac-
tored in only after the final cutoffs have been set, and can only increase your final grade.)

Let P be a simple polygon with n sides. We say that two vertices vi and vj of P are monotonically
reachable if there is an x-monotone path from vi to vj . (Fig. 5 shows a number of vertices of P that
have x-monotone paths between them.) Present an O(n log n) time algorithm that computes a count
of the total number of monotonically reachable pairs.

x

v7
v6

v5v2

v4

v3

v1

Figure 5: Some of the monotonically reachable pairs for the vertices shown: {v1, v3}, {v1, v4}, {v1, v7},
{v2, v4}, {v2, v7}, {v3, v4}, {v3, v7}, {v5, v7}, {v6, v7}.)

Hint: Note that the number of pairs can be quadratic in n. To achieve a running time of O(n log n)
you cannot count pairs one by one, you need to count them in groups.

4

CMSC 754: Spring 2020 Dave Mount

Sample Problems for the Midterm Exam

The midterm exam will be this Thursday, March 12 in class. It will be closed-book and
closed-notes, but you may use one sheet of notes (front and back).

Unless otherwise stated, you may assume general position. If you are asked to present an
O(f(n)) time algorithm, you may present a randomized algorithm whose expected running time is
O(f(n)). For each algorithm you give, derive its running time and justify its correctness.

Disclaimer: The following sample problems have been collected from old homeworks and
exams. Because the material and order of coverage varies each semester, these problems do not

necessarily reflect the actual length, coverage, or difficulty of the midterm exam.

Problem 1. Give a short answer to each question (a few sentences suffice).

(a) Explain how to use at most three orientation tests to determine whether a point d lies
within the interior of a triangle △abc in the plane. You do not know whether △abc is
oriented clockwise or counterclockwise (but you may assume that the three points are
not collinear).

(b) In the algorithm presented in class for decomposing a simple polygon into monotone
pieces, what was the definition of helper(e) and (in a few words) what role did it play
in the algorithm?

(c) Recall that in a simple polygon, a scan-reflex vertex is a vertex having both incident edges
on the same side of a vertical line passing through the vertex. Given a simple polygon P

with n vertices and r scan-reflex vertices, what is the maximum and minimum number of
diagonals that might be needed to decompose it into monotone pieces? Explain briefly.

(d) A convex polygon P1 is enclosed within another convex polygon P2 (see Fig. 1(a)).
Suppose you dualize the vertices of each of these polygons (using the dual transform
given in class, where the point (a, b) is mapped to the dual line y = ax− b). What can
be said (if anything) about the relationships between the resulting two sets of dual lines.

P2

P1

(a) (b)

Figure 1: Problems 1(d) and 1(e).

(e) Any triangulation of any n-sided simple polygon has exactly n − 2 triangles. Suppose
that the polygon has h polygonal holes each having k sides. (In Fig. 1(b), n = 10, h = 2,
and k = 4). As a function of n, h and k, how many triangles will such a triangulation
have? Explain briefly.

1

(f) A trapezoidal map of n segments has roughly 6n vertices and roughly 3n trapezoids.
Explain (e.g., via a charging argument) where the numbers 6 and 3 come from.

Problem 2. For this problem give an exact bound for full credit and an asymptotic (big-Oh)
bound for partial credit. Assume general position.

(a) You are given a convex polygon P in the plane having nP sides and an x-monotone
polygonal chain Q having nQ sides (see Fig. 2(a)). What is the maximum number of
intersections that might occur between the edges of these two polygons?

(b) Same as (a), but P and Q are both polygonal chains that are monotone with respect to
the x-axis (see Fig. 2(b)).

(a)

P

Q

Q

P

(b)

Figure 2: Maximum number of intersections.

(c) Same as (b), but P and Q are both monotone polygonal chains, but they may be
monotone with respect to two different directions.

Problem 3. Consider the following randomized incremental algorithm, which computes the small-
est rectangle (with sides parallel to the axes) bounding a set of points in the plane. This
rectangle is represented by its lower-left point, low, and the upper-right point, high.

(1) Let P = {p1, p2, . . . , pn} be a random permutation of the points.

(2) Let low[x] = high[x] = p1[x]. Let low[y] = high[y] = p1[y].

(3) For i = 2 through n do:

(a) if pi[x] < low[x] then (∗) low[x] = pi[x].

(b) if pi[y] < low[y] then (∗) low[y] = pi[y].

(c) if pi[x] > high[x] then (∗) high[x] = pi[x].

(d) if pi[y] > high[y] then (∗) high[y] = pi[y].

Clearly this algorithm runs in O(n) time. Prove that the total number of times that the
“then” clauses of statements 3(a)–(d) (each indicated with a (∗)) are executed is O(log n) on
average. (We are averaging over all possible random permutations of the points.) To simplify
your analysis you may assume that no two points have the same x- or y-coordinates.

Problem 4. You are given a set of n vertical line segments in the plane S = {s1, . . . , sn}, where
each segment si is described by three values, its x-coordinate xi, its upper y-coordinate y+i
and its lower y-coordinate y−i . Present an efficient an algorithm to determine whether there
exists a line ℓ : y = ax + b that intersects all of these segments (see Fig. 3). Such a line is
called a transversal. (Hint: O(n) time is possible.) Justify your algorithm’s correctness and
derive its running time.

2

xi

y−i

y+i

ℓ : y = ax + b

Figure 3: Existence of a transversal.

Problem 5. A slab is the region lying between two parallel lines. You are given a set of n slabs,
where each is of vertical width 1 (see Fig. 4). Define the depth of a point to be the number
of slabs that contain it. The objective is to determine the maximum depth of the slabs using
plane sweep. (For example, in Fig. 4 the maximum depth is 3, as realized by the small
triangular face in the middle.)

1

1

1

1
1

1

1 1

1

2

2

2

2

2

1

3

0

0

0
0

0

0

0

0

p1

p2

p4

p3

q1
q4

q2

q3

1

x0 x1

Figure 4: Maximum depth in a set of slabs.

We assume that the slabs lie between two parallel lines at x = x0 and x = x1. The ith slab is
identified by the segment piqi that forms its upper side (and the lower side is one unit below
this). Let I denote the number of intersections between the line segments (both upper and
lower) that bound the slabs. Present an O((n + m) log n)-time algorithm to determine the
maximum depth. (Hint: Use plane-sweep.)

Problem 6. A simple polygon P is star-shaped if there is a point q in the interior of P such
that for each point p on the boundary of P , the open line segment qp lies entirely within
the interior of P (see Fig. 5). Suppose that P is given as a counterclockwise sequence of its
vertices 〈v1, v2, . . . , vn〉. Show that it is possible to determine whether P is star-shaped in
O(n) time. (Note: You are not given the point q.) Prove the correctness of your algorithm.

Problem 7. You are given two sets of points in the plane, the red set R containing nr points and
the blue set B containing nb points. The total number of points in both sets is n = nr + nb.
Give an O(n) time algorithm to determine whether the convex hull of the red set intersects
the convex hull of the blue set. If one hull is nested within the other, then we consider them
to intersect. (Hint: It may be easier to consider the question in its inverse form, do the convex
hulls not intersect.)

3

P P

q

Figure 5: Determining whether a polygon is star-shaped.

Problem 8. Given a set of n points P in the plane, we define a subdivision of the plane into
rectangular regions by the following rule. We assume that all the points are contained within
a bounding rectangle. Imagine that the points are sorted in increasing order of y-coordinate.
For each point in this order, shoot a bullet to the left, to the right and up until it hits
an existing segment, and then add these three bullet-path segments to the subdivision (see
Fig. 6(a)).

new point

segments trimmedsegments trimmed

(a) (b)

Figure 6: Building a subdivision.

(a) Show that the resulting subdivision has size O(n) (including vertices, edges, and faces).

(b) Describe an algorithm to add a new point to the subdivision and restore the proper
subdivision structure. Note that the new point may have an arbitrary y-coordinate, but
the subdivision must be updated as if the points had been inserted in increasing order
of y-coordinate (see Fig. 6(b)).

(c) Prove that if the points are added in random order, then the expected number of struc-
tural changes to the subdivision with each insertion is O(1).

Problem 9. Given two points p1 = (x1, y1) and p2 = (x2, y2) in the plane, we say that p2 dominates

p1 if x1 ≤ x2 and y1 ≤ y2. Given a set of points P = {p1, p2, . . . , pn}, a point pi is said to
be Pareto maximal if it is not dominated by any other point of P (shown as black points in
Fig. 7(b)).

Suppose further that the points of P have been generated by a random process, where the x-
coordinate and y-coordinate of each point are independently generated random real numbers
in the interval [0, 1].

(a) Assume that the points of P are sorted in increasing order of their x-coordinates. As
a function of n and i, what is the probability that pi is maximal? (Hint: Consider the
points pj , where j ≥ i.)

4

(a) (b)

Figure 7: Pareto maxima.

(b) Prove that the expected number of maximal points in P is O(log n).

Problem 10. Consider an n-sided simple polygon P in the plane. Let us suppose that the leftmost
edge of P is vertical (see Fig. 8(a)). Let e denote this edge. Explain how to construct a data
structure to answer the following queries in O(log n) time with O(n) space. Given a ray r

whose origin lies on e and which is directed into the interior of P , find the first edge of P
that this ray hits. For example, in the figure below the query for ray r should report edge f .
(Hint: Reduce this to a point location query in an appropriate planar subdivision.)

f

re

P

Figure 8: Ray-shooting queries.

5

CMSC 754: Spring 2020 Dave Mount

CMSC 754: Midterm Exam

This exam is closed-book and closed-notes. You may use one sheet of notes (front and back).
Write all answers in the exam booklet. If you have a question, either raise your hand or come to
the front of class. Total point value is 100 points. Good luck!

In all problems, unless otherwise stated, you may assume that inputs are in general position.
You may make use of any results presented in class and any well known facts from algorithms
or data structures. If you are asked for an O(T (n)) time algorithm, you may give a randomized

algorithm with expected time O(T (n)).

Problem 1. (20 points) Consider the two segments s1 and s2 shown in Fig. 1(a).

s1

s2

p2

p1

q2
q1

p

left right

s

above below

(a) (b)

Figure 1: Trapezoidal map and point location.

(a) (5 points) Show the (final) trapezoidal map for these two segments, assuming the insertion
order 〈s1, s2〉. Draw over the figure below.

(b) (15 points) Show the point-location data structure resulting from the construction given
in class, assuming the insertion order 〈s1, s2〉. Recall the nodes types in Fig. 1(b). (Note:
We will give 50% partial credit if your data structure works correctly, even if it is not
the same as the one from class.)

Problem 2. (20 points; 4–6 points each) Short-answer questions.

(a) You have three distinct, collinear points in the plane that appear in the left-to-right
order p, q, r (see the figure below). Assume the dual transformation given in class,
which maps the point (a, b) to the line y = ax − b. What can you assert about the
relationship between the dual lines p∗, q∗ and r∗? (Be as specific as possible.)

p

q

r

(b) You have two convex polygons P and Q, each having exactly n vertices. No two edges
of P and Q are collinear. As a function of n, what is the maximum number of times the
boundaries of P and Q can intersect? (No proof needed.) For n = 5, give an example
(two convex pentagons) that illustrates your bound.

1

(c) Consider the linear-programming algorithm given in class for n constraints in dimension
2. In class we showed that the expected-case running time of the algorithm is O(n).
What is the worst-case running time of the algorithm? Briefly justify your answer (in a
sentence or two).

(d) It is a fact that if P is a uniformly distributed random set of n points in a circular disk
in the plane, the expected number of vertices of P ’s convex hull is Θ(n1/3). That is, the
lower and upper bounds are both within some constant of n1/3 for large n.

What is the average-case running time of Jarvis’s algorithm for such an input? (If you
forgot the running time of Jarvis’s algorithm, we will give it to you for a 50% penalty
on this problem.)

Problem 3. (15 points) You are given a set of line segments S = {s1, . . . , sn} in the plane, where
si = pi, qi (see the figure below). A slab is the region of the plane between two parallel
lines. The vertical width of the slab is the length of the slab’s intersection with the y-axis.
Present an efficient algorithm to compute the slab of maximum vertical width that stabs all
the segments, so that for all i, pi lies above the slab and qi lies below the slab. If no such
slab exists, your algorithm should indicate this. (Hint: This is possible in O(n) time, but
O(n log n) is acceptable for partial credit.)

si

pi

qi

max

Problem 4. (20 points) You are given an axis-parallel rectangle R in the plane and a set of line
segments S = {s1, . . . , sn} that lie within R. The segments may intersect only at their
endpoints, and their endpoints may lie on the boundary of R (see Fig. 2(a)).

(a) (b) (c)

(no x-monotone path)

Figure 2: Monotone path.

Recall that a polygonal chain is x-monotone if any vertical line intersects the chain in at
most one point. Present an algorithm which, given R and S, determines whether there exists
an x-monotone polygonal chain, that does not intersect the interior of any segment, that
starts anywhere on the left side of R, and goes to anywhere on the right side of R. Your
algorithm does not need to output the path, simply “yes” or “no.” (For example, the input
from Fig. 2(b) the answer is “yes” as illustrated by the dotted path, and for the input from

2

Fig. 2(c) the output is “no”.) Briefly justify your algorithm’s correctness and derive its
running time.

(Hints: For full credit, your algorithm should run in O(n log n) time. You may modify any
algorithm from class.)

Problem 5. (25 points) A polygonal chain in the plane is cyclically monotone with respect to a
point O if every ray emanating from O intersects the chain in a single point (see Fig. 3(a)).
Henceforth, let us take O to be the origin of the coordinate system.

(a) (c)(b)

O

P
+

P
+

u
v

P
+

P
−

P
−

P
−

Figure 3: Triangulating and cyclically monotone region.

You are given two simple polygons, P− and P+, whose boundaries are cyclically monotone.
These two chains do not intersect each other, and P− is nested within P+. Let n denote the
total number of vertices on P− and P+.

(a) (10 points) Define a cross diagonal to be a line segment uv, where u is a vertex of P−, v
is a vertex of P+, and this segment lies entirely within the region between P− and P+

(see Fig. 3(b)). Present an efficient algorithm, which given just P− and P+, computes
any one cross diagonal uv. Briefly justify your algorithm’s correctness and derive its
running time. (Hint: This is possible in O(n) time, but O(n log n) is acceptable for
partial credit.)

(b) (15 points) Give an algorithm to triangulate the region between P− and P+ (see
Fig. 3(c)). Briefly justify your algorithm’s correctness and derive its running time.
(Hint: This is possible in O(n) time, but O(n log n) is acceptable for partial credit. It
may help to assume that you are given a cross diagonal to start. You may modify an
algorithm given in class.)

3

CMSC 754: Spring 2020 Dave Mount

Homework 3: Voronoi Diagrams, Delaunay Triangulations, and More

Handed out Thu, April 16. Due Thu, April 30, 9:30am. (Updated!) Late homeworks are not accepted
(unless an extension has been prearranged) so please turn in whatever you have completed by the due date.
Unless otherwise specified, you may assume that all inputs are in general position. Whenever asked to give
an algorithm running in O(f(n)) time, you may give a randomized algorithm whose expected running time
is O(f(n)).

Problem 1. In class we proved that the Delaunay triangulation of a set of sites in the plane maximizes the
minimum angle. (It is the max-min angle triangulation.) Unfortunately, it is not the best triangulation
for the following two criteria.

(a) Give an example of a set of point sites in the plane such that the Delaunay triangulation of this
set does not minimize the sum of edge lengths, among all possible triangulations. In other words,
the Delaunay triangulation is not the minimum-weight triangulation.

(b) Give an example of a set of point sites in the plane such that the Delaunay triangulation of this
point set does not minimize the maximum angle, among all possible triangulations. In other
words, the Delaunay triangulation is not the min-max angle triangulation.

In each case briefly explain your construction. Your example should be in general position (e.g., no
four sites should be cocircular).

Hint: In both cases, it is possible build a counterexample consisting of just four points that are nearly
co-circular. It suffices to present a single, specific example.

Problem 2. The Delaunay triangulation of a convex polygon is defined to be the Delaunay triangulation
whose sites are the vertices of the polygon. As usual, let us assume that the vertices V = {v1, . . . , vn}
of the polygon are presented in counterclockwise order around the polygon. Also we assume that
n ≥ 3 and no three vertices are collinear. In this problem, we will analyze a randomized incremental
algorithm for constructing the Delaunay triangulation of a convex polygon.

The algorithm is similar to the randomized incremental algorithm given in class, but with the following
differences. First, we do not use any sentinel sites, just the points themselves. We begin by permuting
the points randomly. Let P = 〈p1, . . . , pn〉 denote the sequence of vertices after this permutation
has been applied. We start with the triangle △p1p2p3. Then, we go through the points p4 through
pn, adding each one and updating the Delaunay triangulation as we go. The insertion process for pi
involves the following steps:

(i) Determine the edge ab of the current convex hull that is visible to pi (see Fig. 1(a)).

(ii) Connect p to the convex hull by adding the edges api and pib to the convex hull (see Fig. 1(b)).

(iii) As in Lecture 13, perform repeated edge flips until all the triangles incident to pi satisfy the local
Delaunay condition (see Fig. 1(c)).

Answer the following questions about this algorithm:

(a) Prove that in any triangulation of an n-sided convex polygon, the number of triangles is n − 2
and the number of edges (including the edges of the convex hull) 2n− 3.

(b) What is the average degree of a vertex in the Delaunay triangulation of n? (Include the two edges
of the convex hull that are incident to this vertex.) Derive your answer.

(c) Apply a backwards analysis to bound the expected number of edge flips performed when the ith
site is inserted into the diagram (for 4 ≤ i ≤ n).

1

insert incircle test and edge flips
pi pi pi

a

b

a

b

a

b

d

(a) (b) (c)

Figure 1: Delaunay triangulation of a convex point set.

(d) In step (i) of the above algorithm, we need to determine the edge ab of the convex hull that is
visible to the new site pi. Describe a method for answering these queries and derive its expected
running time. (Hint: As we did in the standard Delaunay Triangulation algorithm, apply some
form of bucketing combined with a backwards analysis.) O(n log n) total expected time is possible,
but if you think you can do this in O(n) expected time, see the challenge problem.

Problem 3. In this problem, we will derive a complete version of the empty-circumcircle test for four
points in R

2, which considers both the affine and circular parts of the test. Let a, b, and c be three
distinct, non-collinear points in the plane, and let us assume that they have been labeled so that
Orient(a, b, c) > 0 (that is, they are given in counterclockwise order). Let d be any point in plane.
Throughout this problem, you may assume general position: No three points are collinear and no four
points are cocircular.

You may access the points only through the two determinant-based functions Orient(a, b, c) (from
Lecture 2) and inCircle(a, b, c, d) (from Lecture 13).

(a) Consider the subdivision of the plane induced by the three lines defining the edges of triangle
△abc (see Fig. 2(a)). Present a short code fragment that uses orientation tests to label a point
d according to the region in which it lies. For example, given the point d shown in the figure,
your code fragment should output the label “2”. (Hint: It may simplify your code to think of the
labels as binary numbers, e.g., 2 = 0102.)

a

b

cc

0

6

3

5

2

4

1

(a) (b) (c)

d

a

b

cc

in

out

out

out

d

a

b

cc

in

out

out

out

in

in

in

out

out

out

1

2

4

Figure 2: InCircle testing.

(b) Clearly, if d lies in region 0 it is inside the circumcircle of △abc, and if it lies in any of the regions 3,
5, or 6, it is outside this circumcircle. Explain how to apply the inCircle function from Lecture 13
to classify d as lying inside or outside the circumcircle of △abc for the remaining regions 1, 2, and

2

4. (Hint: Recall that this test is based on the sign of a determinant, which was derived under the
assumption that the arguments are presented in counterclockwise order.)

Problem 4. Computational biologist often compute physical properties of large molecules. One of these
properties is something called the accessible surface area of the molecule. We will consider this problem
in a 2-dimensional setting.

We model the atoms of our molecule as a set of unit disks, each of radius of 1, centered at a given set of
points P = {p1, . . . , pn}. Let bi denote the unit disk centered at point pi. Let M(P) =

⋃

n

i=1
bi denote

the union of these disks (shaded in blue in Fig. 3(a)). Let ∂M(P) denote its boundary. Observe that
∂M(P) is composed of circular arcs, and it may have multiple connected components (all of which
contribute to the accessible surface).

(a) Present an O(n log n)-time algorithm, which given a set P of n points in the plane, computes the
length of accessible surface (see the solid curve in Fig. 3(a)).

Note: I am mostly interested in how to identify the circular arcs that make up the boundary of
M(P), not the actual perimeter value. To simplify matters, you may assume that you have access
to a black-box function that computes the length of a given circular arc.

(a) (b)

accessible
surface

water molecule

accessible
surface

solvent-

pi

bi

1
M(P)

r0

Figure 3: Accessible surface.

(b) In most applications in drug design, the molecule resides in liquid solvent, such as water. A
statistic that is more relevant is something called the solvent-accessible surface. We model a
water molecule as a disk of some radius r0. Imagine that we roll such a disk around the entire
boundary of M(P) and trace out the path taken by the center of this disk (the dashed curve in
Fig. 3(b)). As with the accessible surface, this boundary may have multiple components, all of
which contribute to the final result.

Present an O(n log n)-time algorithm, which given P and r0, computes the length of the solvent-
accessible surface (the dashed curve in Fig. 3(b)).

Hint: This should be an easy extension to (a).

Problem 5. In linear classification in machine learning it is desirable to determine whether two point sets
in R

d can be partitioned by a hyperplane. We will consider the problem in a 2-dimensional setting.
When a perfect partition is not possible, one approach is to find a line that achieves the best possible
split. Let A and B be two point sets in the plane. Given a nonvertical line ℓ : y = ax− b, let ℓ+ and
ℓ− denote the halfplanes lying above and below ℓ, respectively. Define ℓ’s separation defect to be

δ(ℓ) = min
(

|A ∩ ℓ+|+ |B ∩ ℓ−|, |A ∩ ℓ−|+ |B ∩ ℓ+|
)

.

3

So, if ℓ separates A from B the separation defect is zero. Otherwise, it is equal to the number of
points that fall on the “wrong” side of the separating line. (For example, the line shown in Fig. 4
has separation defect of three.) In this problem, we will derive a roughly quadratic-time algorithm to
compute a line of minimum separation defect.

ℓ

ℓ
+

ℓ
−

Figure 4: Problem 5: The line ℓ has separation defect 3.

(a) Given two point sets A and B in R
2 and a line ℓ, what is the meaning of ℓ’s separation defect in

the dual setting? Explain briefly. Assume the standard dual transformation (a, b) ↔ y = ax− b.

(b) Letting n = |A| + |B|, present an O(n2 log n)-time algorithm to compute a line of minimum
separation defect. Briefly explain your algorithm and derive its running time. (Note: There may
generally be many lines achieving the minimum defect. Your algorithm may output any one of
them. If a point lies on ℓ you have a choice of which halfplane to assign it. I will let you decide
how to handle this. You may either have your algorithm make the choice explicitly to minimize
the defect, or you can just assume that ℓ is chosen so that no point of either set lies on it.)

(Challenge problems count for extra credit points. These additional points are factored in only after the
final cutoffs have been set, and can only increase your final grade.)

Challenge Problem 1. Show that Problem 2(d) (locating points in the incremental DT algorithm for
convex hulls) can be solved in O(n) time in expectation.

Challenge Problem 2. Prove that if a, b, and c are given in counterclockwise order, the InCircle determi-
nant is positive if and only if d lies inside the circumcircle of △abc. (This implies that the affine test
used in Problem 3(a) is not needed.)

4

CMSC 754: Spring 2020 Dave Mount

Homework 4: Arrangements and Approximations

Handed out Fri, May 1. Due at the start of class on Tuesday, May 12. Late homeworks are not accepted
(unless an extension has been prearranged) so please turn in whatever you have completed by the due date.
Unless otherwise specified, you may assume that all inputs are in general position. Whenever asked to give
an algorithm running in O(f(n)) time, you may give a randomized algorithm whose expected running time
is O(f(n)).

Problem 1. Given a set P of n points in R
2 in general position, and given a nonvertical line ℓ, project the

points orthogonally onto ℓ and consider their left-to-right order (see Fig. 1). The result is called an
allowable permutation. (Let us assume that ℓ is chosen so no two points have the same projection.)

p1

p2

p3 p4

p5
p6

p7

p8

ℓ

p1

p2

p3 p4

p5
p6

p7

p8

Projection order: 〈p7, p3, p8, p4, p6, p1, p2, p5〉

Figure 1: Allowable permutation

In general there are an exponential number (n!) of distinct permutations of n points. Prove that the
number of allowable permutations is only O(n2). (Hint: Explain how each allowable permutation is
manifested in the dual arrangement.)

Problem 2. You are given three sets of points R, G, and B (red, green, and blue) in R
2. A tricolor slab is

a pair of parallel lines such that the closed region bounded between these two lines contains at least
one point from each of R, G, and B. Define the slab’s height to be the vertical distance between these
lines (see Fig. 2).

h
∈ R

∈ G

∈ B

Figure 2: Tricolor slab of height h.

(a) There are infinitely many a tricolor slabs. Assuming that the point set R ∪ G ∪ B is in general
position, prove that a tricolor slab of minimum height has a point of each color on its boundary,
with two points on one line and one point on the other.

1

(b) Assuming the standard dual transformation (mapping point (a, b) to line y = ax − b), explain
what a tricolor slab of minimum vertical height h corresponds to in the dual setting.

(c) Present an algorithm, which given inputs R, G, and B, computes the tricolor slab of minimum
vertical height. Your algorithm should run in O(n2 log n) time, where n = |R|+ |G|+ |B|. Derive
your algorithm’s running time and justify its correctness.

Problem 3. You are given two sets of points in R
d, called R (for red) and B (for blue). A bichromatic pair

is any pair of points (p, q), where p ∈ R and q ∈ B. The bichromatic diameter is defined to be the
bichromatic pair of maximum distance: maxp∈R,q∈B ‖p− q‖.

Given ε > 0, an ε-approximation to the bichromatic diameter is a pair p′ ∈ R and q′ ∈ B, such that

‖p− q‖

1 + ε
≤ ‖p′ − q′‖ ≤ ‖p− q‖,

where p and q are the true bichromatic diameter.

Present an efficient algorithm which, given R, B, and ε > 0, computes an ε-approximation to the
bichromatic diameter. Your algorithm should run in time O(n log n+n/εd) time, where n = |R|+ |B|.
Derive your algorithm’s running time and justify its correctness.

Problem 4. You are given a set P = {p1, . . . , pn} of n points in R
d. Given a positive real r, the proximity

index, denoted ΨP (r) is the number of pairs of points of P that lie within distance r of each other.
(Formally, ΨP (r) is the number of pairs 1 ≤ i < j ≤ n such that ‖pi − pj‖ ≤ r.)

Given P and r, we can easily compute ΨP (r) in O(n2) time by inspecting all pairs of points, but since
n is very large, this is too slow. Given a constant ε > 0, an ε-approximation to ΨP (r) is an integer X
from 0 to

(

n

2

)

, such that

ΨP

(

r

1 + ǫ

)

≤ X ≤ ΨP ((1 + ǫ)r).

Present an algorithm running in time O(n log n + n/ǫd) which, given P , r, and ε, computes such
an approximation. (Hint: You may assume that, when a quadtree is computed, each node u of the
quadtree can be associated with an integer wt(u), which indicates the number of points of P lying
within u’s subtree.)

Explain your algorithm’s running time and justify its correctness.

Challenge problems count for extra credit points. These additional points are factored in only after the final
cutoffs have been set, and can only increase your final grade.

Challenge Problem 1. Modify your solution to Problem 2 (tricolor slab), so that instead of minimizing
the vertical distance between the lines of the slab, it minimizes the perpendicular distance between
these lines. The running time should be the same.

Challenge Problem 2. You are given two sets of points B and R (called, blue and red, respectively) in
R

2, each of size n. Give an O(n2 log n) time algorithm which determines whether there exists a line ℓ
such that the orthogonal projections of the points of B ∪ R onto this line alternate between blue and
red (see Fig. 3). (It does not matter which color the sequence begins or ends with, just that there is
no consecutive red-red or blue-blue in the projected order.)

2

ℓ

R

B

Figure 3: Red-blue alternating projection

3

CMSC 754: Spring 2020 Dave Mount

Sample Problems for the Final Exam

The final exam will be released Fri, May 15, 8:00am EDT (on the class handouts page) and will be
due through Gradescope upload by Mon, May 18, 8:00am EDT.

Disclaimer: The following problems have been collected from old homeworks and exams. They do
not necessarily reflect the actual difficulty or coverage of questions on the final exam. The final will be
comprehensive, but will emphasize material since the midterm.

In all problems, unless otherwise stated, you may assume general position, and you may use of any results
presented in class or any well-known result from algorithms and data structures.

Problem 0. You should expect a problem that involves working through some algorithm covered in class
on a given input set.

Problem 1. Give a short answer (a few sentences) to each question. Unless explicitly requested, explana-
tions are not required, but may be given for partial credit.

(a) A dodecahedron is a convex polyhedron that has 12 faces, each of which is a 5-sided pentagon.
Every vertex has degree 3. How many vertices and edges does the dodecahedron have? Show how
you derived your answer.

(b) Given a set P of n points in the plane, what is the maximum number of edges in P ’s Voronoi
diagram? (For full credit, express your answer up to an additive constant.)

(c) When the ith site is added to the Delaunay triangulation using the randomized incremental
algorithm, what is the worst-case number of edges that can be incident on the newly added
site? What can you say about the expected-case number of such edges (assuming that points are
inserted in random order)?

(d) For each of the following assertions about the Delaunay triangulation of a set P of n points in
the plane, which are True and which are False?

(i) The Delaunay triangulation is a t-spanner, for some constant t

(ii) The Euclidean minimum spanning tree of P is a subgraph of the Delaunay triangulation

(iii) Among all triangulations of P , the Delaunay triangulation maximizes the minimum angle

(iv) Among all triangulations of P , the Delaunay triangulation minimizes the maximum angle

(v) Among all triangulations of P , the Delaunay triangulation minimizes the total sum of edge
lengths

(e) An arrangement of n lines in the plane has exactly n2 edges. How many edges are there in an
arrangement of n planes in 3-dimensional space? (Give an exact answer for full credit or an
asymptotically tight answer for half credit.) Explain briefly.

(f) Given an n-element point set P in R
d and a scalar s ≥ 1, it is known that an s-WSPD consists

of O(sdn) pairs. Given any point p ∈ P , what is the maximum number of pairs {Pu, Pv} of the
decomposition such that either p ∈ Pu or p ∈ Pv. (Express your answer as a function of s, d, and
n. Explain briefly.)

Problem 2. You are given a set P of n points in R
2. Present data structures for answering the following two

queries. In each case, the data structure should use O(n2) space, it should answer queries in O(log n)
time. (You do not need to explain how to build the data structure.)

(a) The input to the query is a nonvertical line ℓ. Such a line partitions P into two (possibly empty)
subsets: P+(ℓ) consists of the points lie on or above ℓ and P−(ℓ) consists of the points of P that
lie strictly below ℓ (see Fig. 1(a)). The answer is the maximum vertical distance h between two
lines parallel to h that lie between P+(ℓ) and P−(ℓ) (see Fig. 1(b)).

For simplicity, you may assume that neither set is empty (implying that h is finite).

1

(a) (b)

ℓ

P+(ℓ)

P−(ℓ)

ℓ

h

ℓ

(c)

ℓ+

ℓ−

Figure 1: Separation queries.

(b) Again, the input to the query is a nonvertical line ℓ. The answer to the query consists of the two
lines ℓ− and ℓ+ of minimum and maximum slope, respectively, that separate P+(ℓ) from P−(ℓ)
(see Fig. 1(c)). You may assume that P+(ℓ) from P−(ℓ) are not separable by a vertical line
(implying that these two slopes are finite).

Problem 3. You are given a set P of n points in the plane and a path π that visits each point exactly once.
(This path may self-intersect. See Fig. 2.)

π

ℓ1 ℓ2

Figure 2: Path crossing queries.

Explain how to build a data structure from P and π of space O(n) so that given any query line ℓ, it
is possible to determine in O(log n) time whether ℓ intersects the path. (For example, in Fig. 2 the
answer for ℓ1 is “yes,” and the answer for ℓ2 is “no.”) (Hint: Duality is involved, but the solution
requires a bit of lateral thinking.)

Problem 4. Consider the following two geometric graphs defined on a set P of points in the plane.

(a) Box Graph: Given two points p, q ∈ P , define box(p, q) to be the square centered at the midpoint
of pq having two sides parallel to the segment pq (see Fig. 3(a)). The edge (p, q) is in the box
graph if and only if box(p, q) contains no other point of P (see Fig. 3(b)). Show that the box
graph is a subgraph of the Delaunay triangulation of P .

(b) Diamond Graph: Given two points p, q ∈ P , define diamond(p, q) to be the square having pq as
a diagonal (see Fig. 3(c)). The edge (p, q) is in the diamond graph if and only if diamond(p, q)
contains no other point of P (see Fig. 3(d)). Show that the diamond graph may not be a subgraph
of the Delaunay triangulation of P . (Hint: Give an example that shows that the diamond graph
is not even planar.)

Problem 5. You are given a set of n sites P in the plane. Each site of P is the center of a circular disk of
radius 1. The points within each disk are said to be safe. We say that P is safely connected if, given
any p, q ∈ P , it is possible to travel from p to q by a path that travels only in the safe region. (For
example, the disks of Fig. 4(a) are connected, but the disks of Fig. 4(b) are not.)

2

(a) (b)

q
p

box(p, q)

(c) (d)

q
p

diamond(p, q)

Figure 3: The box and diamond graphs.

Present an O(n log n) time algorithm to determine whether such a set of sites P is safely connected.
Justify the correctness of your algorithm and derive its running time.

(a) (b)

qp qp

Figure 4: Safe connectivity.

Problem 6. In class we argued that the number of parabolic arcs along the beach line in Fortune’s algorithm
is at most 2n− 1. The goal of this problem is to prove this result in a somewhat more general setting.

Consider the beach line at some stage of the computation, and let {p1, . . . , pn} denote the sites that
have been processed up to this point in time. Label each arc of the beach line with its the associated
site. Reading the labels from left to right defines a string. (In Fig. 5 below the string would be
p2p1p2p5p7p9p10.)

p1

p2

p3
p4

p5

p6

p7

p8

p9

p10
p2

p1
p2

p5
p7 p9 p10

Figure 5: Beach-line complexity.

(a) Prove that for any i, j, the following alternating subsequence cannot appear anywhere within
such a string:

. . . pi . . . pj . . . pi . . . pj . . .

(b) Prove that any string of n distinct symbols that does not contain any repeated symbols (. . . pipi . . .)
and does not contain the alternating sequence1 of the type given in part (a) cannot be of length
greater than 2n− 1. (Hint: Use induction on n.)

1Sequences that contain no forbidden subsequence of alternating symbols are famous in combinatorics. They are known as

Davenport-Schinzel sequences. They have numerous applications in computational geometry, this being one.

3

Problem 7. Given a set of n points P in R
d, and given any point p ∈ P , its nearest neighbor is the closest

point to p among the remaining points of P . Note that nearest neighbors are not reflexive, in the sense
that if p is the nearest neighbor of q, then q is not necessarily the nearest neighbor of p. Given an
approximation factor ε > 0, we say that a point p′ ∈ P is an ε-approximate nearest neighbor to p if
‖pp′‖ ≤ (1 + ε)‖pp′′‖, where p′′ is the true nearest neighbor to p.

Show that in O(n log n + (1/ε)dn) time it is possible to compute an ε-approximate nearest neighbor
for every point of P . Justify the correctness of your algorithm. Hint: This can be solved using either
WSPDs or spanners.

Note: There exists an algorithm that runs in O(n log n) time that solves this problem exactly, but it
is considerably more complicated than the one I have in mind here.

4

CMSC 754: Spring 2020 Dave Mount

CMSC 754: Final Exam

Throughout, unless otherwise stated, you may assume that points are in general position. You may make
use of any results presented in class and any well known facts from algorithms or data structures. If you are
asked for an O(T (n)) time algorithm, you may give a randomized algorithm with expected time O(T (n)).
Total point value is 100 points. Good luck!

Problem 1. (30 points) Give a short answer (a few sentences at most) to each question. Except where
requested, explanations are not required.

(a) (3 points) You are given four points a, b, c, d in R
2. Using just orientation tests, show how to test

whether these points are the vertices of a convex quadrilateral listed in counterclockwise order.

(b) (3 points) In the plane-sweep algorithm for line-segment intersection, we were meticulous in
deleting intersection events from the priority queue whenever the two segments generating this
event were no longer consecutive on the sweep line. Why did we do this?

(c) (3 points) Let P be a simple polygon with n sides, where n is a large number. As a function of
n, what is the maximum number of scan reflex vertices that it might have? Draw an example to
illustrate.

(Hint: Recall the definition from Lecture 5. No proof is needed. It is okay if your answer is off
by a constant additive term. For full credit, the multiplicative factor on n should be tight.)

(d) (3 points) We claimed that the worst-case depth of the point-location data structure based on
trapezoidal maps is Ω(n). Draw an example of a set of line segments and an insertion order for
these segments such that the depth of the point-location data structure is Ω(n). (It should be
clear how to generalize your example to work with arbitrarily large values of n.)

(e) (6 points)

(i) Define the zone of an arrangement of lines in the plane.

(ii) State the Zone Theorem.

(iii) What was the importance of the zone theorem in our algorithm for building line arrangements
in the plane?

(f) (12 points) Consider the simplicial complex shown in Fig. 1(a), consisting of four 0-simplices
(0, 1, 2, 3), five 1-simplices (01, 03, 12, 13, 23), and two 2-simplices (013, 123). Consider the 1-chains
c1 = {01, 12, 23} and c2 = {12, 13, 23} (see Fig. 1(b)).

(a) (b)

0 3

1 2

0 3

1 2

c1
c2

Figure 1: Chains in a simplicial complex. Recall the definitions from Lecture 18.

(i) Express c1 and c2 as 0-1 vectors over the basis 〈01, 03, 12, 13, 23〉.

(ii) Express c1 + c2 as a 0-1 vector over this same basis.

(iii) What is the chain c3 such that c1+ c3 = c2? (Express it as a 0-1 vector over this same basis.)

1

http://www.cs.umd.edu/class/spring2020/cmsc754/Lects/lect05-triangulate.pdf
http://www.cs.umd.edu/class/spring2020/cmsc754/Lects/lect18-topology.pdf

(iv) What are the boundaries of c1 and c2? (Hint: Each is a 0-chain, which can be expressed as
a 0-1 vector over the basis 〈0, 1, 2, 3〉.

Problem 2. (10 points) You are given three n-element point sets in R
2, R = {r1, . . . , rn}, called red,

G = {g1, . . . , gn}, called green, and P = {p1, . . . , pn}, called purple. For each of the following two
problems, present a reduction to linear programming in a space of constant dimension. Indicate which
variables are used in the LP formulation, what the constraints are, and what the objective function is.
Indicate what to do if the LP returns an answer that is infeasible or unbounded (if that is possible).

(a) (5 points) A (linear) slab is a region of the plane bounded by two parallel lines, y = ax+ b+ and
y = ax+ b−. Given R, G, and P , compute the slab (if it exists) of minimum vertical height such
that all the points of R lie strictly above the slab, all the points of G lie within the slab, and all
the points of P lie strictly below the slab (see Fig. 2(a)). If no such slab exists, you should detect
and report this.

(a) (b)

y = ax + b+

y = ax + b−

y = ax2 + bx + c+

y = ax2 + bx + c−

Figure 2: Linear and parabolic slabs.

(b) (5 points) A parabolic slab is the region of the plane bounded between two “parallel” parabolas,
y = ax2 + bx + c+ and y = ax2 + bx + c−. Given R, G, and P , compute the parabolic slab of
minimum vertical distance such that all the points of R lie strictly above the slab, all the points
of G lie within the slab, and all the points of P lie strictly below the slab (see Fig. 2(b)). If no
such parabolic slab exists, you should detect and report this.

Problem 3. (25 points) You are given two sets of points R and B in R
2 (called red and blue, respectively).

Let n denote the total number of points in both sets. Let us assume that the point sets are disjoint,
that is, R∩B = ∅. Given an arbitrary point q ∈ R

2 (not in R or B), we color it (red or blue) depending
on whether its closest point in R ∪ B is red or blue. (In Fig. 3(a), q is colored red, since its nearest
neighbor is red). If q is equidistant to its closest points in R and B, it may be assigned either color.

(a) (b)

BR

q

B′

R′

q

Figure 3: Coloring queries via nearest neighbors and compatible subsets.

2

(a) (5 points) Present a data structure with O(n) storage which is given R and B as inputs, and
answers the following color queries: given any q ∈ R

2, return q’s color. It should be possible
to build your data structure in O(n log n) time, and it should answer queries in O(log n) time.
(Hint: Don’t do this from scratch. Combine structures we have seen in this semester.)

(b) (5 points) In some applications, n may be extremely large, and so it is desirable to reduce the
sizes of R and B as much as possible. We say that two subsets R′ ⊆ R and B′ ⊆ B are compatible

with R and B if every point q ∈ R
2 is assigned the same color with respect to R′ and B′ that it

would have been assigned with respect to the original sets R and B. (We have removed all the
points marked with “×” in Fig. 3(b). Observe that point q is still correctly colored by its nearest
neighbor in the reduced point set.)

Present an efficient algorithm that, given R and B as input, produces the compatible subsets
R′ ⊆ R and B′ ⊆ B having the smallest possible number of points. Just give the algorithm.
Correctness and running time will be covered below. (Hint: Voronoi diagrams and/or Delaunay
triangulations may be helpful.)

(c) (5 points) Prove that your algorithm produces a compatible subset by showing that for every
query point q ∈ R

2, the color of its nearest neighbor in R′ ∪B′ is the same as its nearest neighbor
in R ∪B.

(d) (5 points) Assuming that the points of R ∪ B are in general position, prove that your algorithm
produces a minimum-sized subset by showing that for any smaller subset, there exists a point
q ∈ R

2 that will be incorrectly colored based on its nearest neighbor. (The general-position
assumption is critical!)

(e) (5 points) Derive the running time of your algorithm. (Hint: O(n log n) time is possible. Partial
credit will be given for a slower algorithm.)

Problem 4. (20 points) Consider an n-element point set P = {p1, . . . , pn} in R
2, and an arbitrary point

q ∈ R
2 (which is not in P). We say that q is k-deep within P if any line ℓ passing through q has at

least k points of P on or above the line and at least k points of P on or below it.

q

ℓ

Figure 4: Point q is 4-deep within P .

For example, the point q in Fig. 4 is 4-deep, because any line passing through q has at least four points
of P on either side of it (including lying on the line itself).

(a) (5 points) Assuming we use the usual dual transformation, which maps point p = (a, b) to line
p∗ : y = ax− b, explain what it means for a point q to be k-deep within P (in terms of the dual
line q∗ and the dual arrangement A(P ∗)).

(b) (5 points) Present an efficient algorithm which, given P and q, determines the maximum value k
such that q is k-deep within P . (Hint: O(n log n) time is possible. I will accept a slower algorithm
for partial credit.)

(c) (10 points) Present an efficient algorithm which, given P and an integer k, determines whether
there exists a point q that is k-deep within P . (Hint: First consider what this means in the dual
setting. O(n2 log n) time is possible. I will accept a slower algorithm for partial credit.)

3

For parts (b) and (c) briefly justify your algorithm’s correctness and derive its running time.

Problem 5. (15 points) A set P of n points in R
d determines a set of

(

n

2

)

different distances. Define ∆(P)

to be this set of distances {‖pi − pj‖ : 1 ≤ i < j ≤ n}. Given an integer k, where 1 ≤ k ≤
(

n

2

)

, we
are interested in computing the kth smallest distance from this set. Normally, this would take O(n2)
time, so let’s consider a fast approximation algorithm.

Let δ(P, k) denote the exact kth smallest distance in ∆(P). Given ε > 0, a distance value x is an
ε-approximation to δ(P, k) if

δ(P, k)

1 + ε
≤ x ≤ (1 + ε)δ(P, k).

Present an efficient algorithm to compute such a value x. Justify your algorithm’s correctness and
derive its running time. (Hint: Use well-separated pair decompositions. You may assume that, when
the quadtree is computed, each node u of the quadtree is associated with an integer wt(u), which
indicates the number of points of P lying within u’s subtree.)

You may assume that d and ε are constants (independent of n). I know of an algorithm that runs in time
O(n log n+n/εd) time, but I will accept for full credit an algorithm that runs in time O((n log n)/εd).)

4

